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Abstract

In this Master of Science thesis a simulation model of the HiperLAN/2 physical
layer is designed and implemented. The model should provide insight in the
demodulation functions that are necessary in HiperLAN/2 and it should be
useful for determining channel selection and computational requirements for
the software defined radio project1 at the University of Twente. The model is
implemented in Matlab Simulink and uses C++ as descriptive language.

Before the transmitted signal reaches the demodulation part in the receiver,
it is distorted by the radio channel, noise, interference and the receiver hardware.
These effects are modelled and their influence on the system’s performance is
determined. A receiver should contain –besides inverse OFDM and subcarrier
demodulation– a channel estimator, a frequency offset and phase offset corrector
and a symbol window tracker.

These functions have been implemented in the HiperLAN/2 receiver model
and experiments have been done. The performance of the simulation model on
an additive white Gaussian noise channel did match the theoretical expected
performance within 0.1 dB.

Simulations also showed that good demodulation can take place with 32-bit
fixed point numbers. The frequency offset and phase offset corrector showed
that they can correct distortions within 1 dB of the expected performance.

1See [1]



Abbreviations

ACH Access feedback CHannel
ADC Analog to Digital Converter
ALU Arithmetic Logic Unit

AP Access Point
BCH Broadcast CHannel
BER Bit Error Rate

BPSK Binary Phase Shift Keying
CL Convergence Layer
DC Direct Current

DFT Discrete Fourier Transform
DLC Data Link Control
EC Error Control

ETSI European Telecommunications Standards Institute
FCH Frame CHannel
FEC Forward Error Correction
FFT Fast Fourier Transformation

HIPERLAN/2 HIgh PERformance Radio Local Area Network
I In-phase

IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transformation
LAN Local Area Network
LNA Low Noise Amplifier

MAC Medium Access Control
MT Mobile Terminal

OFDM Orthogonal Frequency Division Multiplexing
PER Packet Error Rate
PHY PHYsical layer

Q Quadrature
QAM Quadrature Amplitude Modulation
QoS Quality of Service

QPSK Quaternary Phase Shift Keying
RCH Random access CHannel
RLC Radio Link Control
SDR Software Defined Radio
VCO Voltage Controlled Oscillator

WLAN Wireless LAN
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Symbols

∆f Subcarrier spacing
ψ Phase difference between transmitter and receiver mixers

b0, b1, ... Bit stream in transmitter after FEC coding
Cl,n Complex symbol value of OFDM symbol n carried by subcarrier l

d0, d1, ... Bit stream in transmitter before FEC coding
df Free distance of the the FEC coding
Eb Bit energy [J/bit]
f∆ Frequency difference between transmitter and receiver mixers

fADC Sample frequency of the ADC
fsample Sample rate

g0, g1, ... Input bits of the mapping function in the transmitter
 Square root of minus one (

√−1)
Kmod Modulation type dependant normalization factor

N0 Noise power [W/Hz]
NBPSC The number of bits carried on one OFDM sub carrier
Nerror Number of bit errors

NSD Number of data carriers
NSP Number of pilot carriers
NST Total number of carriers

pm Pilot value m
R Bite rate [bit/s]

Rc Coding rate of the FEC coding
s(t) Transmitted bandpass signal

s̃n(t) Baseband version of the transmitted signal
TCP Cyclic prefix duration

TS OFDM symbol interval
TU Useful symbol part duration
W Occupied bandwidth

={x} Imaginary part of x
<{x} Real part of x

2



Contents

1 Introduction 6
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Communication system . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 HiperLAN/2 system . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 HiperLAN/2 network . . . . . . . . . . . . . . . . . . . . 8
1.3.2 HiperLAN/2 protocol layers . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Physical Layer of HiperLAN/2 Transmitter 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Performance measurements in the system . . . . . . . . . . . . . 14

2.2.1 Bit error rate . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Packet error ratio . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Minimum sensitivity . . . . . . . . . . . . . . . . . . . . . 15

2.3 Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Forward error correction coding . . . . . . . . . . . . . . . . . . . 16

2.4.1 Bit-rate independent FEC coding . . . . . . . . . . . . . . 17
2.4.2 Bit-rate dependent FEC coding . . . . . . . . . . . . . . . 19

2.5 Data interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Orthogonal frequency division multiplexing . . . . . . . . . . . . 23

2.7.1 Pilot carriers . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.2 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.3 Cyclic prefix . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Physical burst generation . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Transmission of the burst . . . . . . . . . . . . . . . . . . . . . . 29

2.9.1 Spectrum of baseband signal . . . . . . . . . . . . . . . . 29
2.9.2 Carrier frequency allocation . . . . . . . . . . . . . . . . . 30
2.9.3 Bandpass signal . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Expected performance for AWGN channel . . . . . . . . . . . . . 30
2.11 Transmitter model implementation . . . . . . . . . . . . . . . . . 32
2.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3



3 Signal Distortions in the HiperLAN/2 System 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Indoor radio channel . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Multipath propagation mechanisms . . . . . . . . . . . . . 37
3.2.2 Rayleigh Channel Model . . . . . . . . . . . . . . . . . . . 38
3.2.3 Delay spread and coherence bandwidth . . . . . . . . . . 39
3.2.4 Doppler shift and coherence time . . . . . . . . . . . . . . 40
3.2.5 Transfer function . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.6 Baseband description of the indoor radio channel . . . . . 41
3.2.7 Noise and interference . . . . . . . . . . . . . . . . . . . . 43

3.3 Analog hardware architecture of the SDR receiver . . . . . . . . 43
3.3.1 Frequency offset . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Phase offset and phase noise . . . . . . . . . . . . . . . . 47

3.4 Sampling the signal . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Symbol window drift . . . . . . . . . . . . . . . . . . . . . 49

3.5 Digital channel selection . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Digital hardware architecture of the SDR receiver . . . . . . . . . 54

3.6.1 General binary number representation . . . . . . . . . . . 54
3.6.2 Integer numbers . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.3 Fixed point numbers . . . . . . . . . . . . . . . . . . . . . 56
3.6.4 Floating point numbers . . . . . . . . . . . . . . . . . . . 56
3.6.5 Arithmetic logic unit model . . . . . . . . . . . . . . . . . 57

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Receiver Model Algorithms and Implementation 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Receiver architecture . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Serial to parallel conversion . . . . . . . . . . . . . . . . . . . . . 62
4.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Detecting a transmission . . . . . . . . . . . . . . . . . . . 64
4.4.2 Detecting preamble sections . . . . . . . . . . . . . . . . . 64
4.4.3 Tracking symbol window drift . . . . . . . . . . . . . . . . 66

4.5 Prefix removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Frequency offset estimation . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Measuring frequency offset . . . . . . . . . . . . . . . . . 70
4.6.2 Correcting frequency offset . . . . . . . . . . . . . . . . . 71

4.7 Inverse orthogonal frequency division multiplexing . . . . . . . . 72
4.8 Common phase offset correction . . . . . . . . . . . . . . . . . . . 72
4.9 Phase noise correction . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Channel equalization . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.11 Demapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Model Simulation Results 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Ideal channel simulation results . . . . . . . . . . . . . . . . . . . 76

5.2.1 Visualization of outputs . . . . . . . . . . . . . . . . . . . 77
5.2.2 Computational requirements of transmitter and receiver

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4



5.3 Comparison theoretical and simulated performance on AWGN
channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Experiment configuration . . . . . . . . . . . . . . . . . . 81
5.3.2 AWGN channel simulation results using 64-bit floating

point numbers . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.3 AWGN channel simulation results using 32-bit fixed point

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.4 AWGN channel simulation results using 16-bit fixed point

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Phase offset simulation . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Experiment configuration . . . . . . . . . . . . . . . . . . 84
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Frequency offset simulation results . . . . . . . . . . . . . . . . . 85
5.5.1 Experiment configuration . . . . . . . . . . . . . . . . . . 85
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Signal generator – scope channel results . . . . . . . . . . . . . . 87
5.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Conclusions and Recommendations 91
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

5



Chapter 1

Introduction

A software defined radio is a radio architecture, that performs as many as possi-
ble demodulation functions using software, assisted by an as general as possible,
but minimal hardware structure. Conventional radio architectures use a large
amount of hardware, that is specially designed for the specific radio application.

A software defined radio has two advantages over a conventional radio. Users
will become independent of region bounded communication system specifica-
tions, by simply downloading software code for a specific communication sys-
tem and –a probably more realistic advantage– manufactures will only have to
design one receiver architecture, that can be used for many radio applications.
This saves a large amount of design costs.

The software defined radio (SDR) project1 at the University of Twente is
currently investigating the feasibility of a software defined radio system. This is
done by developing a demonstrator, that is capable of demodulation two com-
munication standards: HiperLAN/2, a high-speed wireless local area network
(WLAN ) standard, and Bluetooth, a low-cost and low-speed personal area net-
work (PAN ) standard.

The necessary functions for demodulation and the requirements for a good
reception are currently assessed for the two communication standards. These
results will be used to design an analog front-end, digital channel selection filters
and a demodulator.

In the following section, the objectives of this report are outlined. Hiper-
LAN/2 is the standard, that is under investigation in this report.

In section 1.2 an introduction to communication systems will be given. Sec-
tion 1.3 discusses the HiperLAN/2 communication system shortly. Section 1.4
sketches the outline of this report.

1See [2] and [1].
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1.1 Objectives

The objective of this Master of Science thesis is to design, implement and verify
a simulation model of the physical layer in HiperLAN/2.

The model should provide insight in the demodulation functions that are
necessary in HiperLAN/2 and it should be useful for determining channel selec-
tion and computational requirements. Another important objective is that the
model should be able to study effects of signal distortions by –for example– the
radio channel and the effects of computational noise.

The model must also be able to generate test signals for the analog front-
end and digital channel selection filters and the model must be able demodulate
captured signals from the analog front-end. The model must also be easy ex-
pandable; it must be easy to test new or improved demodulation algorithms and
to determine their performance.

The simulation model must be implemented in Matlab Simulink (see [3]).
The model will be written in the programming language C++ (see [4]).

1.2 Communication system

A communication system transfers information from a source to a user of the
information. In general a communication system exists of five parts: a source of
information, a transmitter of the information, a channel, a receiver and finally
a user of the information. This system is depicted in figure 1.1.

Information
source

Transmitter Channel Receiver

User

Figure 1.1: A communication system

Normally the user of the information is not interested in the manner how the
information is delivered, but merely in the information itself and the accuracy
of the information. Modern communication systems meet this approach. The
systems contain many layers that communicate with each other. Each individ-
ual layer can be seen as an information source at the transmitter side and an
information user at the receiver side.

Why use this layer approach? The communication systems nowadays become
more and more complex. For instance, the channel must be divided along many
transmitters and receivers. Another example is that there are many types of
information messages, that all should be presented to the user in a different
way. Those different message types are most likely transmitted in the same

7



way. So some functions in the system are common to all message types, while
others differ. The division of a communication system in layers makes the system
comprehensible to designers, it makes the system testable in sections and it
makes the system easily expandable (see [5]).

1.3 HiperLAN/2 system

In this report a model is made of the high performance radio local area net-
work (HiperLAN/2 ) physical layer. HiperLAN/2 (see [6]) is a standard for a
wireless local area network (WLAN ), that has been developed by the European
telecommunications standards institute (ETSI ). HiperLAN/2 provides a high
transmission speeds from 6 to 54 Mbit/s. This speed is necessary to meet the
actual requirement for –in example– internet access and hence it is expected
that the standard will broaden its market share in the next few years.

The HiperLAN/2 standard defined by ETSI has an American counterpart:
IEEE 802.11. Both standards use more or less the same physical layer, but differ
in other layers (see [6]).

In the following sections the network architecture of HiperLAN/2 is outlined,
followed by an introduction to the protocol layers in HiperLAN/2.

1.3.1 HiperLAN/2 network

The HiperLAN/2 wireless network has two types of communication devices:

• Mobile Terminals (MT )

• Access Points (AP)

Mobile terminal

Mobile terminal

Fixed network

HiperLAN/2
Radio

Network

Access Point

Access Point

Access Point

Mobile terminal

Mobile terminal

a) b)

Figure 1.2: A typical HiperLAN/2 network. a) Mobile terminals communicate with
a fixed network via access points. b) Mobile terminals communicate directly with each
other

A typical HiperLAN/2 network is depicted in figure 1.2. The MTs communicate
with a fixed network via APs. An example of such a fixed network is a local area
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network (LAN ). HiperLAN/2 supports packet based (ethernet, internet protocol
etc), as well as cell based (asynchronous transfer mode etc) communication (see
[5] and [6]). At a given time an MT will only communicate with one AP.

The MT may move around freely in the the HiperLAN/2 network. The sys-
tem will ensure that an MT always gets the best possible transmission perfor-
mance. This transmission performance is highly dependent on distortions that
occur in the radio link (see chapter 3).

Besides connections between AP and MT, the system also supports direct
connections between two MTs (see [6]). This direct link is specially useful in
home situations.

1.3.2 HiperLAN/2 protocol layers

In figure 1.3 the protocol model of HiperLAN/2 is outlined (see [6]). The system
has three main protocol layers: the physical (PHY ) layer, the data link control
(DLC ) layer and the convergence layer CL.

Higher layers (Ethernet, ATM, IP, UMTS etc)

Physical (PHY) Layer

Data Link Control (DLC)
Layer

Convergence Layer (CL)

Medium Access Control (MAC) Layer

Error Control (EC) LayerRadio Link Control (RLC)
Layer

Figure 1.3: HiperLAN/2 protocol model (see [6])

The task of the physical layer in HiperLAN/2 is to modulate bits that origi-
nate from the data link control layer on the transmitter side and to demodulate
them on the receiver side (see chapter 2). The transmission format on the phys-
ical layer is a burst, which consists of a preamble and a data part.

The frequency spectrum available to HiperLAN/2 is divided into 19 so called
channels. In this report we will refer to those channels as radio channels. Each
of those radio channels has a frequency bandwidth of 20 MHz.

Orthogonal frequency division multiplexing (OFDM ) has been chosen as
modulation technique in HiperLAN/2 , because it has a good performance on
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an indoor radio channel. OFDM is a special kind of multicarrier modulation. The
modulation technique divides the high data rate information in several parallel
bit streams and each of those bit streams modulates a separate subcarrier. In this
way the radio channel is divided into several independent subchannels, which
enables each carrier to support data at a low rate. This enables OFDM to have
a good performance on highly dispersive channels.

The modulation technique has other benefits: it deals efficiently with the
spectrum, since the subcarriers are spaced at minimal distance to each other.

Objects in the proximity of the radio transmitter or receiver can cause that
the receiver receives multiple, delayed and attenuated versions of the transmitted
signal. HiperLAN/2 OFDM is also designed to deal with channels that have a
delay spread up to 250 ns (see chapter 3).

The physical layer transmits 52 subcarriers in parallel per radio channel.
Not all subcarriers contain information that will be delivered to the data link
control layer. Four of the 52 subcarriers are used to transmit pilot tones. Those
pilots assist the demodulation in the receiver.

The data link control (DLC ) layer takes care of logical links between APs and
MTs. The layer is divided into three sublayers: medium access control (MAC )
layer, error control (EC ) layer and radio link control (RLC ) layer. Below these
sublayers will be discussed shortly.

The MAC layer is used to organize the use of the radio link (”whose turn
it is”). The control of the medium is centralized to the AP. It tells the MTs
when they are allowed to transmit data –this is called uplink communication–
and when the AP transmits data for a specific MT –this is called downlink
communication. The sublayer takes also care of dividing the available medium
resources to the needs of the MTs.

MAC Frame MAC Frame MAC Frame

BCH FCH ACH Downlink Uplink RCH

t2 ms

Figure 1.4: The HiperLAN/2 MAC frame has a fixed duration of 2 ms and is divided
in six logical channels: a broadcast channel (BCH), a frame control channel (FCH),
an access feedback channel (AFC), a downlink phase, a uplink phase and a random
access channel (RCH. see [6])

The MAC protocol is based upon time-division duplex and dynamic time-
division multiple access. This means that time has been divided in so called
MAC frames, which allow for simultaneous communication from AP to MT
and visa versa within that frame (see figure 1.4). The duration for uplink and
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downlink phase is dynamically established in the MAC frame depending on the
needs in the network.

The MAC frame is divided in six logical channels. Each MAC frame starts
with the transmission of control data to the MTs. This takes place in the so
called broadcast channel (BCH ). It informs MTs about transmission powers
and timings of other logical channels in the frame. The BCH part is followed by
the frame control channel (FCH ), it contains an exact description of how re-
sources have been allocated in the current frame for uplink and downlink phase.
The following channel, the access feedback channel (ACH ), contains informa-
tion about previous access attempts made in the random access channel (RCH ).
Next the downloading and uploading takes place and finally MTs are allowed
to ask for transmission resources in the so called RCH. Each MAC frame has a
fixed duration of 2 ms.

The error control (EC ) protocol increases the reliability of the transmission
over the data link. It detects bit errors in the receiver and asks for a retrans-
mission of the data. The quality of service (QoS ) can be adapted to the needs
of the transmitted data. For example voice transmissions are sensitive to delays
and hence more missing data will be allowed to keep the delay to a minimum.

The top layer in the HiperLAN/2 standard is the convergence layer (CL).
This layer forms a bridge between HiperLAN/2 and higher layers –like IP– that
use HiperLAN/2 as transport mechanism. Its main function is to convert packets
from those higher layers to packets that can be used in the HiperLAN/2 system.
It makes the HiperLAN/2 connection suitable for a diversity of fixed networks
like Ethernet, IP, ATM, UMTS and many others (see [5] and [6]).

1.4 Outline

Chapter 2 of this report discusses the HiperLAN/2 physical layer in the trans-
mitter and the theoretical expected performance of the system on an additive
white Gaussian noise (AWGN ) channel. The result of this chapter is a verified
model of the physical layer of the HiperLAN/2 transmitter, that is capable to
generate test signals.

In chapter 3 the signal distortions in the (indoor) radio channel, that guides
the radio waves from transmitter to receiver, are discussed. The analog front-
end and digital channel selection filters disturb the received signal too. Effects
that occur, will be discussed. Finally chapter 3 describes a method to simulate
computational noise.

The results from 2 and 3 are used to design and to implement a receiver
model, that is capable of correcting the signal distortions (partly). The source
code of the models is printed in [7].

In chapter 5 some simulation results are presented.

Chapter 6 summarizes the conclusions of this report and discusses some
future research topics for HiperLAN/2 used on the SDR project’s architecture.

11



Chapter 2

Physical Layer of
HiperLAN/2 Transmitter

2.1 Introduction

The HiperLAN/2 physical layer provides transportation mechanisms of bits be-
tween the data link control (DLC ) layer in transmitter and receiver. The ETSI
documentation [8] defines the physical layer in the transmitter with seven func-
tions:

• Scrambling of the binary input stream

• Forward error correction coding

• Interleaving

• Mapping

• Modulation using orthogonal frequency division multiplexing

• Physical burst generation

• Transmitting of the burst

In figure 2.1 the data flow between the seven functions is outlined. At point
A in the figure, the output bits of the DLC layer enter the physical layer. Those
bits are scrambled, forward error correction coding is applied and the bits are
interleaved. This results in a bit group at D called raw bits. The raw bits are
mapped to complex symbols by the mapping function. So at E and further on,
the signals between the entities are complex numbers instead of bits.

The complex subcarrier values at E are modulated with a modulation tech-
nique called orthogonal frequency division multiplexing (OFDM ) and this tech-
nique will be discussed in section 2.7. The resulting OFDM symbols at F are

12



Scrambling FEC coding Interleaving

Mapping OFDM Physical burst

Radio
transmission

Input
bits

B. C.

E.

D.

F. G.

H.

A.

Binary numbers

Vector of complex numbers

Complex samples

Figure 2.1: Data flow between the seven functions of the HiperLAN/2 physical layer
in the transmitter (see [8])

proceeded by a preamble; a sequence of known OFDM symbols. This preamble
is transmitted before the physical layer starts transmitting the OFDM symbols
containing the actual data.

At G we find complex time samples that represent the preamble and the
OFDM symbols. Finally the complex time samples are converted to analog I-
and Q-signals and mixed to a specific carrier frequency in the radio transmission
function.

The tasks of the physical layer on the transmitter side (see figure 2.1) will be
discussed in detail in the following sections. We will see by ”reverse engineering”
why certain choices are made in the physical layer of the HiperLAN/2 system.
This gives useful insight in the system for designing a HiperLAN/2 receiver.

In section 2.9 the spectrum of the transmitted HiperLAN/2 signal will be
discussed. We are interested in the performance of the system in case a certain
distortion (for example noise) is present. Chapter 3 discusses the distortions
present in the transmitter, channel and receiver system, but in section 2.10 we
will already have a closer look to the theoretical performance of the system. In
section 2.2 the definitions of bit error rate, bit energy and packet error ratio will
be explained. The results of section 2.10 will be used in chapter 5 to make a
comparison between the implemented system and the theoretical performance
for simulation model validation purposes.

The result of this chapter is a simulation model of the physical layer of
the HiperLAN/2 transmitter, that can be used for testing receiver algorithms.
The implementation of the model is discussed in section 2.11. Chapter 4 will
discuss the receiver model. Below, the transmitter functions will be further
discussed. Table 2.1 shows what signal names will be used throughout those
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function descriptions.

Table 2.1: Signal names in the transmitter

Signal point in figure 2.1 Signal name
B d0, d1, ...
C b0, b1, ...
D g0, g1, ...
E Cl,n

G s̃n(t) or s̃n[m]
H s(t)

2.2 Performance measurements in the system

2.2.1 Bit error rate

The performance of a transmitter, channel and receiver system is expressed with
the bit error rate (BER), defined as:

BER =
Nerror

NTotal
(2.1)

where Nerror is the number of bits that are wrongly received and Ntotal is
the total number of bits received. This measurement of bit error probability is
plotted against the cause that bits are received wrongly:

Eb

N0
=

Ps

Pn

W

R
(2.2)

a ratio between the average energy that is put in the signal per transmitted bit
in [J/bit] and the power of noise [W/Hz]. In equation 2.2, Ps is the average
power of the transmitted signal in [W ], Pn is the average noise power, R is the
number of bits per second and W is the bandwidth used by the signal1. The
spectral density of the white noise N0 is measured at the input stage of the
detector (see [10]), after channel selection filters (see section 3.5 and figure 3.1).

2.2.2 Packet error ratio

The performance can also be expressed in packet error ratio (PER); a ratio
between the correctly received number of packets and the totally transmitted
number of packets. A packet is a group of bits and HiperLAN/2 uses a fixed
packet size of 54 bytes (see [8]). Note that one incorrect received bit in the group
of 54 bytes marks the packet to be received incorrectly.

The PER can be calculated from BER as follows (see [5]):

PER = 1− (1−BER )54∗8 (2.3)
1This is known as the occupied bandwidth (see [9])
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2.2.3 Minimum sensitivity

The HiperLAN/2 standard defines a minimum sensitivity2 for the receiver,
where the packet error rate of the system needs to be 10% or less for pack-
ets of 54 bytes (see [8]). The system needs a bit error rate of Pb = 2.4 10−3 to
reach a packet error rate of 10% (see section 2.2.2).

In this report we will determine what Eb/N0-ratio is necessary to reach a
PER of 10%.

2.3 Scrambling

This function (see figure 2.2) scrambles the incoming information bits (A in
figure 2.1) that are generated by the data link control layer. Its generator poly-
nomial is given by:

X7 ⊕X4 ⊕ 1 (2.4)

Where X1..7 represents the state of the scrambler. Note that ”⊕”3 denotes a
modulo two adder.

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

Output bit

Input bit

X[1] X[2] X[3] X[4] X[5] X[6] X[7]

modulo two adder

Figure 2.2: Scrambler of HiperLAN/2 physical layer [8]

The scrambler is initialized at different moments, depending on what type
of data is transmitted. The different data types and their relation with the
scrambler initialization moments are discussed in detail in [8] and will not be
discussed in this report.

The initial state of the scrambler depends on the first four bits in the broad-
cast channel (BCH ). Those four bits n4, . . . , n1 represent the number of the
frame that is currently transmitted. The scrambler vector X1..7 is initialized
according to table 2.2.

Table 2.2: Initialization of the scrambler vector

X[1] X[2] X[3] X[4] X[5] X[6] X[7]
Value n1 n2 n3 n4 1 1 1

2Power level measured at the antenna of the receiver.
3This function is also known as an ”exclusive OR”
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The purpose of the scrambler in the HiperLAN/2 system is to limit the
number of consecutive 1’s (or 0’s) to about three. In this way the output symbols
of the mapping entity (see section 2.6) will change although a bit stream of -in
example- all 1’s is transmitted. This randomizing of the output symbols results
in a possible lower bit error rate at the receiver.

Decoding of a scrambled bit stream, can be done with an equal scrambler,
if it is equally initialized.

The scrambler will not be implemented in the transmitter model, because
we will use only a random bit source to obtain simulation results. Future work
should implement this function.

2.4 Forward error correction coding

The next operation in the physical layer of HiperLAN/2 , is forward error cor-
rection (FEC ) coding. It inserts ”redundant” bits in the scrambled bit stream,
in such way that error correction can be applied in the receiver, in a systematic
manner.

Table 2.3: Bit-rate modes of HiperLAN/2 ; section 2.6 explains the subcarrier mod-
ulation

Mode Data bit-rate [Mbit/s] Subcarrier modulation Code rate Rc

A 6 BPSK 1/2
B 9 BPSK 3/4
C 12 QPSK 1/2
D 18 QPSK 3/4
E 27 16QAM 9/16
F 36 16QAM 3/4
G 54 64QAM 3/4

The HiperLAN/2 system is able to operate with various bit-rates (see ta-
ble 2.3 and [8]). The code rate Rc is defined as:

Rc , Input bitrate

Output bitrate
(2.5)

where Input and Output bit-rate are the input and output bit-rate of the FEC
coding.

The transmitter and receiver decide per transmission burst what bit-rate is
actually used. The ETSI standard [8] does not define the procedure for choosing
a mode.4 For simplicity we will assume in this report that the bit-rate is fixed
during a simulation session and that no dynamical mode changes are made.

The forward error correction coding of the HiperLAN/2 system can be di-
vided in a bit-rate mode independent part and a bit-rate dependent part. First

4In [11] a method is proposed, which maximizes the data bit throughput of the system, for
a given signal to noise ratio.
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Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

Output
bit

Input
bit

Figure 2.3: Convolutional encoder of HiperLAN/2 (see [8])

the bit-rate independent part of the FEC coding will be discussed, followed by
the bit-rate mode-dependent part.

2.4.1 Bit-rate independent FEC coding

The basis of the bit-rate independent FEC coding is a nonsystematic convo-
lutional encoder (see figure 2.3) with constraint length seven (see [12]). The
convolutional encoder generates two bits per input bit, hence it has a code rate
Rc = 1/2. The two output values are dependent on the current input bit and
six input bits in the past. The output bits are combined into one bit stream,
with twice the rate of the input bit stream.

The main difference between convolutional coding and block coding is that
block coding divides the input stream in sections, while convolutional coding
creates a bit stream (see [12]). Both methods of coding use only a small fraction
of possible output sequences as codeword sequences. The analysis of convolu-
tional coding closely matches the analysis of block coding (see [12]).

The convolutional encoder used in HiperLAN/2 can correct up to nine bit
errors in combination with an ideal decoder, from the moment a bit error occurs
until the state of the decoder matches is correct again. An important measure
for a specific convolutional encoder is called the free distance df . It tells at how
many incorrectly received bits, the first bit errors start to emerge at the output
of the (ideal) decoder. However, for more than nine bit errors in the received bit
stream, the bit error probability can greatly be reduced, compared to no error
correction. Of course this performance reduces the data bit throughput from
transmitter to receiver and costs processing power in the receiver for decoding.

In this report we will not implement the FEC coding, but we will deduce
a lower limit (the real performance can be better) for the performance of the
convolutional code based on the analysis presented in [12]. For this analysis
we assume that the transmitted bit sequence (the output of the convolutional
encoder) is 0000.... . This sequence is called the zero path. The following analysis
is valid for all other transmitted sequences. The reason why this zero path
sequence is chosen, is that bit errors can easily be counted with an accounting
function (see [12]), because every received 1 means a bit error.

Assume that the probability that a transmitted 0 is received as a 1, is pe. A
decoding error is made when the received bit sequence is closer to another valid
output combination of the convolutional encoder, than to the correct zero path.
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The probability that a decoding error occurs at Hamming distance5 k, is

Pk =
k∑

i= k+1
2

(
k

i

)
pe

i(1− pe)k−i (2.6)

for k is odd and

Pk =
k∑

i= k
2 +1

(
k

i

)
pe

i(1− pe)k−i +
1
2

(
k
k
2

)
pe

k
2 (1− pe)

k
2 (2.7)

for k is even.

The most right term in equation 2.7 represents the fact, that the received
sequence is at equal Hamming distance to the correct path and to the wrong
path. We assume that in half of the cases the correct path is chosen, hence the
term is proceeded by ” 1

2”.

The total probability of a decoding error is given by:

PE <

∞∑

k=df

akPk (2.8)

With ak is the number of paths associated with Hamming distance k from the
correct path and df is the free distance, for which all errors can be corrected.

In practice we are more interested in the probability of a bit error, instead
of the probability of a decoding error. The bit error probability is given by:

Pb <

∞∑

k=df

ckPk (2.9)

With ck is the number of bit errors associated with Hamming distance k from
the correct path.

The accounting function can be used to determine the coefficient ck (see
[12]). If we assume that the decoder makes its decision before df + 8 received
bits, the following ck’s are found (see table 2.4).

Table 2.4: Associated bit errors ck with an incorrect path at Hamming distance k for
the convolutional encoder used in HiperLAN/2 (see [12] page 508)

k df = 10 df + 1 df + 2 df + 3 df + 4 df + 5 df + 6 df + 7
ck 36 0 211 0 1404 0 11633 0

The Viterbi algorithm can be used for optimal decoding of a convolutional
encoded bit stream. A good description of this algorithm is given in [12].

5Hamming distance is the number of different bits between the transmitted sequence and
the received sequence.
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2.4.2 Bit-rate dependent FEC coding

The section above describes the bit-rate independent FEC coding. The bit-rate
dependent FEC coding punctures the output bit stream of the convolutional
encoder in such way, that the code rate changes to Rc = 3/4, 9/16 or remains
1/2 (see [8] and table 2.3).

Consider the output bit stream of the convolutional encoder: b0b1...bn, with
b0 the first transmitted bit. In table 2.5 the applied puncturing is explained.
Note that some bits are not transmitted. Before using a convolutional decoder
–like the Viterbi algorithm– in the receiver, some extra bits must be inserted in
the bit stream to make the codeword equal to its original size (Rc = 1/2).

Table 2.5: Bit-rate mode dependent puncturing. The bold values are placed in the
output bit stream. The input bit stream of the FEC coding is denoted as d0, .... and
the output of the convolutional encoder as b0, ....

Rc = 1
2

Input bit d0

Output bits b0

b1

Rc = 9
16

Input bit d0 d1 d2 d3 d4 d5 d6 d7 d8

Output bits b0 b2 b4 b6 b8 b10 b12 b14 b16

b1 b3 b5 b7 b9 b11 b13 b15 b17

Rc = 3
4

Input bits d0 d1 d2

Output bits b0 b2 b4

b1 b3 b5

The puncturing of the convolutional coding makes the performance of the
FEC coding worse. In the receiver a guess should be made what bit value should
be inserted for the bits not transmitted. Usually is assumed, that the probability
that a missing bit is a 1, equals the probability that it is a 0. Hence either one
of them can be chosen.

Tables 2.6 and 2.7 give the associated bit errors ck with a incorrect path at
Hamming distance k for the convolutional encoder for coding rates of Rc = 3/4
and 9/16 and figure 2.4 shows the performance of FEC coding with Rc = 1/2,
9/16 and 3/4.

From figure 2.4 can be concluded that the usage of the HiperLAN/2 convolu-
tional encoder is only useful, when the raw bit error probability is smaller than
pe < 0.07 for Rc = 1/2, pe < 0.04 for Rc = 9/16 and pe < 0.03 for Rc = 3/4.

The FEC coding will not be implemented in the transmitter nor will an error
correction decoder be implemented in the receiver model discussed in chapter 4.
Future work should implement these functions. We will use the results of this
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Table 2.6: Associated bit errors ck with a incorrect path at Hamming distance k for
the FEC coding rate Rc = 3

4
(taken from [11], table 3)

k df = 5 df + 1 df + 2 df + 3 df + 4 df + 5
ck 2.67 10.33 53.33 297.33 1504 7769

Table 2.7: Associated bit errors ck with a incorrect path at Hamming distance k for
the FEC coding rate Rc = 9

16
(taken from [11], table 4)

k df = 7 df + 1 df + 2 df + 3 df + 4 df + 5
ck 2 10.9 35.7 117.8 342.3 1172.2
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section to determine the raw bit error rate necessary to fulfill the minimum
sensitivity requirement defined in [8].

2.5 Data interleaving

This entity ensures that adjacent bits of the encoded bit stream will not be mod-
ulated on adjacent OFDM subcarriers and that adjacent coded bits are mapped
to alternately higher or lower significant positions in the mapping constellations.
This functionality is performed by two permutations:

• Let k bet the index of bits at the input, let i be the bit index after this
permutation and let NBPSC be the number of bits mapped per OFDM
subcarrier. The first permutation is given by (see [8]):

i =
NBPSC

16
(k mod 16) + floor

(
k

16

)
(2.10)

with k = 0, 1, . . . , NBPSC − 1.

• Let i be the bit index after the first permutation and let j be the index
after this permutation. The second permutation is given by:

j = s floor
(s

i

)
+

(
i + NBPSC − floor

(
16i

NBPSC

)
mod s

)
(2.11)

with i = 0, 1, . . . , NBPSC − 1 and s = max(NBP SC

2 , 1).

The data interleaver will not be implemented in the transmitter model, because
we will use only a random bit source to obtain simulation results. Future work
should implement this function.

2.6 Mapping

This entity maps groups of NBPSC bits to complex subcarrier values and ap-
plies a normalization factor (to achieve same average power for all modulation
types). The input bits are modulated with binary phase shift keying (BPSK ),
quaternary phase shift keying (QPSK ), 16 quadrature amplitude modulation
(16QAM ) or 64 quadrature amplitude modulation (64QAM ). In tables 2.8, 2.9,
2.10 and 2.11 the used Gray coded constellations (see [8]) are shown (g0 repre-
sents the first arriving bit in this entity). The modulation type does not change
within one transmitted burst.

After applying the mapping the to the input bits, the complex result is
multiplied with a modulation type dependent constant (see table 2.12). This
results in a complex subcarrier value:

C = Kmod (α +  β ) (2.12)
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Table 2.8: Binary phase shift keying (NBSPC = 1)

g0 Real output α Complex output β
0 -1 0
1 1 0

Table 2.9: Quaternary phase shift keying (NBSPC = 2)

g0 Real output α g1 Complex output β
0 -1 0 -1
1 1 1 1

Table 2.10: Quadrature amplitude modulation (16) (NBSPC = 4)

g0g1 Real output α g2g3 Complex output β
00 -3 00 -3
01 -1 01 -1
11 1 11 1
10 3 10 3

Table 2.11: Quadrature amplitude modulation (64) (NBSPC = 6)

g0g1g2 Real output α g3g4g5 Complex output β
000 -7 000 -7
001 -5 001 -5
011 -3 011 -3
010 -1 010 -1
110 1 110 1
111 3 111 3
101 5 101 5
100 7 100 7

Table 2.12: Modulation type dependent value of the normalization factor

Modulation type Kmod

BPSK 1
QPSK 1√

2
≈ 0.70711

16QAM 1√
10
≈ 0.31623

64QAM 1√
42
≈ 0.15430
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In groups of NSD = 48 subcarrier values will be used by the following entity
–orthogonal frequency division multiplexing– to create complex baseband sam-
ples.

In section 2.10 a comparison will be made between the expected bit error
rates between ”regular” BPSK, QPSK, or QAM systems and an OFDM system
using the same subcarrier mapping techniques.

The mapping function is implemented in the transmitter model.

2.7 Orthogonal frequency division multiplexing

This function has the following tasks:

• Inserting pilot subcarriers

• Applying orthogonal frequency division multiplexing

• Inserting cyclic prefix

These three functions are implemented in the transmitter model presented in
section 2.11. In the next sections the tasks will be discussed.

2.7.1 Pilot carriers

Four out of the 52 HiperLAN/2 subcarriers are used to transmit a known se-
quence. Those four subcarriers are called pilot carriers (see table 2.13).

The value pm is element m from the sequence (see [8]):

p0...126 = {1, 1, 1, 1,−1,−1,−1, 1,−1, . . . ,−1,−1} (2.13)

With:
m = n mod 127 (2.14)

Where n is the number of the current OFDM symbol in the transmission burst.

The pilot sequence in equation 2.13 can be created with the same generation
polynomial as in equation 2.4. It should be initialized with all 1’s and a 1 in
the polynomial outcome should be replaced by ”−1” and a 0 should be replaced
with ”1” (see [8]).

Although the transmission of pilot carriers consumes energy, the usage of
pilots is very useful, because it gives the receiver information about the channel;
it enables equalization.
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Table 2.13: Subcarriers used to transmit known pilot values

Subcarrier number l Value
-21, -7, 7 pm

21 −pm

Table 2.14: HiperLAN/2 OFDM parameters

Parameter Value
Sampling rate fsample 20 MHz (, 1/T )
Symbol interval TS 4.0µs (= 80 · T )
Useful symbol part duration TU 3.2µs (= 64 · T )
Cyclic prefix duration TCP 0.8µs (= 16 · T )
Number of data carriers NSD 48
Number of pilot carriers NSP 4
Total number of carriers NST 52
Subcarrier spacing ∆f 0.3125 MHz (= 1/TU )

2.7.2 Modulation

After mapping the input bits of the physical layer to NSD = 48 complex sub-
carrier values and after the insertion of NSP = 4 pilot carriers, the resulting
NST = 52 complex subcarrier symbols are converted to 64 complex time sam-
ples, that represent the useful data part of an OFDM symbol. This operation is
done by the following equation:6

s̃n(t) =

{ ∑NST
2

l=−NST
2

Cl,ne2πl∆f (t−TCP−nTS) , nTS ≤ t < (n + 1)TS

0 , else
(2.15)

The meaning of the symbols and their values are explained in table 2.14.
The system does not output a direct current (DC ) component (C0,n = 0). Note
that the subcarriers are orthogonal to each other in the interval TU .

The OFDM operation is known as ”applying a uniform synthesis inverse
discrete Fourier transform (IDFT ) filter bank” (see [13]). An often used im-
plementation for the equation above is the inverse fast Fourier transformation
(IFFT ) algorithm. The result of this algorithm is a sampled version of the time
continue equation above. We will have a closer look at this practical implemen-
tation of this equation.

The ETSI documentation [8] proposes a sample frequency fsample = 20 MHz.
In that case one OFDM symbol -the cyclic prefix included- has a duration TS of
80 samples. The useful data part TU has a duration of 64 samples. Assume that
we calculate OFDM symbol n = 0 and 0 ≤ t < TU , then the sampled version of

6Note that the subcarrier values actually are the spectral contents of the time signal.

24



equation 2.15 results in:

s̃n[m] , s̃n(t)
∣∣∣
t= m

fsample

=

NST
2∑

l=−NST
2

Cl,ne
2πl∆f

m
fsample (2.16)

with m = 0, 1, 2, .., TUfsample-1. equation 2.16 can be written as an inverse
discrete Fourier transformation of the subcarrier values. The IDFT is defined
as:

F [y] =
1
N

N−1∑
x=0

f [x]e2π xy
N (2.17)

with x and y=0,1,2,...,N-1. Thus

s̃n[m] =
N−1∑
x=0

fn[x]e2π xm
N = N · IDFT (fn[x]) (2.18)

and with N = fsample/∆f and

fn = [0Cn,1 Cn,2 . . . Cn,26 0 0 0 0 0 0 0 0 0 0 0 Cn,−26 . . . Cn,−2 Cn,−1] (2.19)

Note that in HiperLAN/2 N = 64. Because N is a power of two, the efficient
IFFT algorithm can be used to calculate the complex base band samples.

Applying the IFFT algorithm on the complex subcarrier symbols (see equa-
tion 2.18) results in 64 complex OFDM samples. The cyclic prefix can be gener-
ated by copying the last 16 complex time samples of the useful data part of an
OFDM symbol and transmit them before transmitting the regular 64 samples.
This and some timing definitions will be discussed in the following section.

2.7.3 Cyclic prefix

Each data OFDM symbol is proceeded by a cyclic prefix. This is an exact copy
of the last TCP seconds of the signal that represents the current OFDM symbol.
In figure 2.5 time definitions, that we will use in this report, are outlined. We
define useful data part duration TU and the total symbol duration TS .

TCP

Symbol n Symbol n+1

t=nTS t=nTS+TCP t=(n+1)TS t=(n+2)TSt=(n+1)TS+TCP

Useful data
part

Cyclic
prefix

TS

� �
� �

TU

 Copy

Figure 2.5: Timing definitions
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In the HiperLAN/2 standard of the physical layer, two alternative durations
of the cyclic prefix are defined: TCP = 0.8 µs and TCP = 0.4 µs. The later
is defined as optional to the transmitter and the receiver. In this report we
will only work with TCP = 0.8 µs. Table 2.14 gives other durations used in
HiperLAN/2.

2.8 Physical burst generation

A train of OFDM symbols containing data of higher protocol layers is proceeded
by a preamble. This preamble consists of special OFDM symbols, that are known
to the receiver. The configuration of the preamble dependents on the burst type.
In this report will not be explained when and why certain burst types are used.
The five burst types in HiperLAN/2 are (see [8]):

• Broadcast burst

• Downlink burst

• Uplink burst with short preamble

• Uplink burst with long preamble

• Directlink burst

All burst types use one or more so called preamble sections to precede the
data burst. The standard of the HiperLAN/2 physical layer defines the preamble
sections by their subcarrier values and duration. Before transmission of a sec-
tion, OFDM is applied to the subcarrier values (see section 2.7). The preamble
sections are depicted in figure 2.6. The choice of subcarrier values makes that the
preamble sections consist of repetitions of identical parts. This is demonstrated
for preamble section A in figure 2.7.

Preamble section A consists of five parts of 16 samples, denoted in [8] as
A IA A IA IA7. Applying OFDM to the subcarrier values results in four parts,
namely A IA A IA and hence the last necessary IA can be seen as a postfix to
the section. Preamble section A has a duration of 4.0 µs. Before transmission
of the preamble section the complex time samples are multiplied with

√
13/6.

Note that preamble section A in fact uses QPSK loaded subcarriers.

There are two types of preamble section B (see figure 2.6 b and c). Both
use a special case of QPSK loaded subcarriers, namely the distance between the
subcarrier values is as large as possible. The short version of preamble section
B consists of five parts of 16 samples: B B B B IB (see [8]) and has a duration of
4.0 µs. The first four parts are generated by applying OFDM to the subcarrier
values. The last part IB is a postfix to the section, that is generated by inverting
the sign of the last 16 proceeding samples. The long version of preamble section
B is represented by ten parts: B B B B B B B B B IB and has a duration of 8.0 µs.
Before transmission the complex time samples are multiplied with

√
13/6.

7I in front of a letter means a sign inversion for all samples in that preamble section part.
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Figure 2.6: Preamble sections used to create a preamble to the data OFDM symbols.
a) Preamble section A, b) Preamble section B (short), c) Preamble section B (long)
and d) Preamble section C. The horizontal axis represents the subcarrier index l. The
shade represents the value of the subcarrier. The preambles sections in a) and b) have
a duration of 4.0 µs and in c) and d) 8.0 µs.
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Figure 2.7: The choice of subcarrier values in preamble section A makes that the
preamble consist of (sign inverted) repetitions of 16 samples

Preamble section C (see figure 2.6 d) has a duration of 8.0 µs and uses in fact
BPSK modulated subcarrier values. OFDM creates 64 complex time samples of
the 52 subcarriers values. After a prefix –the last 32 samples of the preamble
section OFDM symbol–, the symbol is transmitted twice.

Section A
Section B

(short)
Section C Data

Section C Data

Section B
(short)

Section C Data

Section B (long) Section C Data

a)

b)

c)

d)

t

Figure 2.8: Preamble structure. a) Broadcast burst, b) downlink burst, c) uplink
burst with short preamble and d) uplink burst with long preamble or directlink burst

Figure 2.8 shows which preamble structure is used with a certain burst type.

The preamble sections and the burst types have been implemented in the
transmitter model.
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2.9 Transmission of the burst

In this section the radio transmission of the burst will be discussed. First we
will have a closer look at the spectrum of the baseband signal. Next the carrier
frequency allocation will be discussed shortly. The complex baseband signal is
converted to a bandpass signal. This is described in section 2.9.3.

The ETSI HiperLAN/2 physical layer standard [8] defines transmit masks;
demands for the transmitted power in frequency bands other than the intended
frequency band. A HiperLAN/2 transmitter should comply with these masks,
since they limit the distortion, that transmitter may cause to other systems and
neighboring HiperLAN/2 channels.

2.9.1 Spectrum of baseband signal

The complex envelope s̃(t) of the transmitted bandpass signal is given by (see
section 2.7 and [8]):

s̃(t) =

NST
2∑

l=−NST
2

Cl e−2πl∆f t (2.20)

The amplitude spectrum is:

S̃(f) =

NST
2∑

l=−NST
2

Cl δ(f −∆f l) (2.21)

f0 8.125 MHz-8.125 MHz

|)(
~

| fS

Figure 2.9: Spectrum of s̃(t)

This frequency spectrum is calculated using the Fourier property (see [10]):

g(t)e2πfζt ←→ G(f − fζ) (2.22)

So the entire frequency spectrum of g(t) is shifted and the DC value is now
located at f = fζ instead of f = 0. Note that there is no mirrored spectrum at
f = −fζ , as would be the case for real signals.

In equation 2.21 the relation between the subcarrier number and the fre-
quency spectrum becomes clear.
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2.9.2 Carrier frequency allocation

The HiperLAN/2 carrier frequencies are located in two frequency bands: from
5.150 GHz to 5.350 GHz and from 5.470 GHz to 5.725 GHz (see [8]). The
HiperLAN/2 carrier frequencies are spaced 20 MHz apart. These 20 MHz bands
are called channels.

In this report we will use fc to denote the carrier frequency that should be
used for the transmission, fs for the carrier frequency that is actually used for
the transmission by the transmitter and fr for the down-mixed frequency in the
receiver. These definitions will be used in chapter 3.

2.9.3 Bandpass signal

The complex envelope s̃(t) is transformed to the bandpass signal s(t), centered
at the carrier frequency fc, with the following equation (see [8]):

s(t) =
√

2 · <{s̃(t)e2πfct} (2.23)

Note that s(t) is a real signal and hence will have a two sided, symmetrical
frequency spectrum (see [10]).

Assume that the carrier frequency is much larger than half the bandwidth
of the modulated signal:

fc À ∆f
NST

2
(2.24)

For HiperLAN/2 signals this assumption will be correct, since transmission takes
place in the 5 GHz band (fc ≈ 5 · 109 Hz) and half the width of the baseband
spectrum is approximately 8 106 Hz.

Using the Fourier property (see [10]):

<{g(t)} ←→ 1
2
[G(f) + G∗(−f)] (2.25)

we can calculate the frequency spectrum of the bandpass signal S(f):

S(f) =
1√
2
· [S̃(f − fc) + S̃∗(−f + fc)] (2.26)

Note that this signal has a component centered at fc and a component centered
at −fc (see figure 2.10)

2.10 Expected performance for AWGN channel

In an additive white Gaussian noise -AWGN - channel, the following relation
exists for a BPSK modulated system (see [14]):

pe = Q

(√
2

Eb

N0

)
(2.27)
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Figure 2.10: Spectrum of the real signal s(t)

with
Q(z) , 1√

2π

∫ ∞

z

e−
λ2
2 dλ (2.28)

and pe the raw bit error probability.

If the OFDM system is compared to a ”regular” BPSK system, we note
that the OFDM system uses 48 BPSK channels in parallel and that the system
”wastes” 1/5 of the transmitted power to the cyclic prefix. So the total signal
power Ps OBPSK for an OFDM system using BPSK compared to the Ps BPSK

of a BPSK system writes:

Ps OBPSK =
5
4
· (48 · Ps BPSK + 4 · Ppilot) (2.29)

The four pilot carriers are modulated BPSK, with the same power as the infor-
mation bearing subcarriers. Thus the equation above evaluates to:

Ps OBPSK = 65 · Ps BPSK (2.30)

The noise power during the cyclic prefix in the OFDM symbol has no effect on
the bit error rate of the system. Hence the noise power is scaled by 4/5.

The bit-rate of the OFDM system is higher than of the BPSK system:

ROBPSK =
4
5
· 48 ·RBPSK (2.31)

The resulting expression for the average bit energy of OFDM is:

Eb OBPSK =
Ps OBPSK

ROBPSK
=

65 · Ps BPSK

38.4 ·RBPSK
≈ 1.69 · Eb BPSK (2.32)

Thus
Eb OBPSK

N0 OBPSK
=

65
48

Eb BPSK

N0 BPSK
(2.33)

From this can be concluded that the OFDM system using BPSK as subcar-
rier modulation techniques needs an extra ≈ 1.3 dB to reach the same raw bit
error rate as a ”regular” BPSK system. This calculation is valid for all other
subcarrier mapping techniques, because the average subcarrier energy is kept
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equal to that of the BPSK mapping and equal to the pilot carrier energy. In [9]
and [15] is the BER Eb/N0 relationship described for BPSK, QPSK and QAM
systems. In the next paragraph those relationships will be rewritten with the
finding for HiperLAN/2 OFDM.

The theoretical BER as function of Eb/N0 for a HiperLAN/2 QPSK system
is given by:

pe OQPSK = Q

(√
48
65

Eb

N0

)
(2.34)

and for 16QAM:

pe O16QAM =
1
4

(
1− 1√

16

)
Q

(√
48 · 3 · 4

65 · (2 · 16− 1)
Eb

N0

)
(2.35)

and for 64QAM:

pe O64QAM =
1
6

(
1− 1√

64

)
Q

(√
48 · 3 · 6

65 · (2 · 64− 1)
Eb

N0

)
(2.36)

Figure 2.11 shows the expected raw bit error rate for the HiperLAN/2 system
and figure 2.12 shows the expected bit error rate after error correction in the
receiver.

In section 2.2.3 we calculated that the minimum sensitivity at a packet error
rate of 10% translates to a bit error probability of Pb = 2.4 10−3. Table 2.15
summarizes the theoretical minimum Eb/N0 requirements for the different bit-
rate modes of the HiperLAN/2 system (see also figure 2.12).

Table 2.15: Minimum theoretical Eb/N0 requirements to reach a PER of 10% using
packet length of 54 bytes. The values are determined using figure 2.12

Bit-rate mode Sub carrier modulation Rc Minimum Eb/N0 [dB]
A BPSK 1/2 3.0
B BPSK 3/4 5.0
C QPSK 1/2 6.0
D QPSK 3/4 8.0
E 16QAM 9/16 11.0
F 16QAM 3/4 12.0
G 64QAM 3/4 15.0

2.11 Transmitter model implementation

The following functions are implemented in the HiperLAN/2 physical layer of
the transmitter simulation model:

• Mapping
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Figure 2.11: Expected BER of HiperLAN/2 before error correction
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Figure 2.12: Expected BER of HiperLAN/2 after error correction (see table 2.3)
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• Orthogonal frequency division multiplexing

• Physical burst generation

The C++ source code of the model is printed in a separate document [7]. Sec-
tion A.1 of that document explains the choice of the simulation software that is
used. In sections A.2 and sections A.3 the general model structure and common
functions are presented. The source code of the transmitter is printed in sections
A.4.1 to A.4.6 of the document [7].

The testing of the transmitter simulation model implementation is discussed
in [16]; the transmitter model passed its functional test.

2.12 Conclusion

In this chapter the functionality of the physical layer of HiperLAN/2 is dis-
cussed. This is done following the concept configuration as proposed in [8].

Besides insight in the HiperLAN/2 system, this chapter provides a model of
a HiperLAN/2 transmitter and theoretical AWGN performance of the system
is deduced.

The following conclusions are drawn in this chapter:

• Input bits of the physical layer are scrambled. This causes a possible im-
provement of the BER.

• A convolutional encoder in combination with bit-rate mode dependent
puncturing is used to apply FEC coding to the scrambled bits. The per-
formance of the FEC coding in combination with an ideal decoder was
analytical determined. The result is shown in figure 2.4.

• The FEC coded bits are interleaved to transmit neighboring bits on differ-
ent subcarriers. This improves the BER in fading channel environments.

• The bits are mapped using BPSK, QPSK, 16QAM or 64QAM. The average
power of the transmitted signal is kept equal for all modulation types.

• The system uses four pilot carriers (to the receiver known values).

• OFDM is used as modulation technique.

• A cyclic prefix is added to the signal.

• The theoretical performance of the HiperLAN/2 OFDM system on an
AWGN channel was outlined in section 2.10. The results are depicted in
figures 2.11 and 2.12 and table 2.15. These results can be used to test a
decoder.

• A HiperLAN/2 physical layer simulation model of the transmitter has
been implemented. It models the mapping, OFDM and physical burst
generation functions. It passed its functional test.
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Chapter 3

Signal Distortions in the
HiperLAN/2 System

3.1 Introduction

The previous chapter described how the physical layer of the HiperLAN/2 sys-
tem creates a bandpass signal that contains information about the bit stream
at the input of the layer. This chapter discusses disturbances of this bandpass
signal, that are caused by the indoor radio channel and the receiver hardware.
figure 3.1 shows the configuration of the communication system of the SDR
project (see [17]).

Transmitter Channel
Analog

hardware

Analog to
digital

conversion

Digital
channel
selection

Demodulator

Receiver

Figure 3.1: Overview of the SDR projects system configuration (see [17])

The channel guides the modulated signals from the transmitter to the re-
ceiver. In most cases the HiperLAN/2 connections will be situated in an indoor
environment. Although the HiperLAN/2 connection is wireless, the terminals
will only move at a slow speed for instance at walking speed. In section 3.2
the propagation mechanisms of an indoor radio channel are discussed. After
the explanation of the propagation mechanisms, we will discuss the Rayleigh
channel model; a model that seems reasonable for an indoor environment. The
findings in section 3.2 will be useful for designing a channel equalizer, discussed
in chapter 4.

The analog hardware of the receiver can cause some disturbances to the
signal. In section 3.3 the analog hardware used in the SDR project is presented
and frequency offset, phase offset and phase noise are discussed.
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After the analog hardware, the HiperLAN/2 signal is sampled. Sampling
causes quantization noise in the signal.

In chapter 2 we have seen that the HiperLAN/2 signal is transmitted in
bands of 20 MHz. The receiver must select one of those bands and filter out
unwanted signal components, before demodulation can take place. The channel
selection filter causes a distortion in the band of interest. This will be discussed
in section 3.5.

Another distortion of the signals in the receiver is the fact that numbers are
represented with a finite number precision (see [18] and [19]). When operations
like ”+” and ”/” are carried out, rounding or truncating of signal values takes
place. This introduces noise in the signals. In section 3.6 this distortion will be
discussed and an algorithm will be presented, that can be used to simulate a
certain number precision.

Throughout this chapter we will prove, that all these disturbances can be
simulated at baseband level1 , instead of the real world bandpass signal. This is
convenient for simulation of the system, because it reduces the execution time of
the simulation, where the simulated time remains equal. Note that a simulation
system should work with simulation time steps, that represent –at least– two
times the highest frequency of the process to be simulated.

3.2 Indoor radio channel

HiperLAN/2 systems will be used in a wide range of environments, like offices,
large buildings (i.e. stock exchanges or exhibition halls) and residential environ-
ments (see [20]). Five different channel models have been made by ETSI, to be
able to simulate all these environments. The channel models are described in
[21]. In [20] simulation results are presented using the channel models. In the
first stage of the SDR project, no actual transmitting will take place through
the indoor radio channel and hence the channel models will not be used in this
report. A future study should implement the channel models.

Three physical propagation mechanisms play a role in an indoor radio chan-
nel (see [22], [23], [24] and [25]):

• Reflection

• Diffraction

• Scattering

These mechanisms are all described by the Maxwell equations. The following
sections explain these effects and how these effects can be modelled.

1The spectrum of the signal is centered around f = 0. Bandpass means that the spectrum
is centered around another frequency: f 6= 0.
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3.2.1 Multipath propagation mechanisms

Reflection
A radio wave is (partially) reflected by an object with a smooth surface
that is large compared with the wavelength of the signal. A part of the sig-
nal energy is absorbed by the material. So both reflected and transmitted
signal are attenuated (see figure 3.2). In the frequency range our system of
interest operates, the transmitted signal is only moderately attenuated. In
an office environment walls, floors and furniture are the main contributors
to this effect.

Incoming wave

Partial reflected
wave

Partial
transmitted wave

Large object

Absorption of energy
by object

Figure 3.2: Reflection of waves on large objects compared to wavelength

Scattering
Scattering occurs when the radio waves incident on an object which size
is about or smaller the signal wavelength (see figure 3.3). The energy of
the radio wave will scatter in many directions. This phenomenon is cased
by in example metallic studs or cabinets.

Incoming wave

Scattered wave

Small object

Figure 3.3: Scattering of wave on objects which size is about or smaller the wavelength

Diffraction
A part of the radio wave bends into the shaded area behind a large object
even if the object is impenetrable to the radio wave (see figure 3.4). This
effect is caused by edges of walls, windows and other large objects. The
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energy contributions of diffracted paths can be large. The signal variations
can be as large as 20 dB in some situations.

Very large object

Diffracted wave
Incoming wave

Figure 3.4: Diffraction of wave on very large objects compared to wavelength

All these mechanisms cause delayed and attenuated versions of the transmitted
signal to arrive at the receiver (see [25]). Several models have been made to
describe these effects. The Rayleigh channel model is a suitable model to describe
multipath propagation in an indoor office environment (see [25], [22] and [26]).
Note that this model does not cope with non-linear distortions.

3.2.2 Rayleigh Channel Model

As discussed above, the modulated signal is transmitted through an air inter-
face. This implies that there are several ways for the transmitted signal to reach
the receiver. Walls, furniture and all other objects that may be located in a
reasonable distance from transmitter and receiver reflect the electromagnetic
waves. All these signals may travel a different distance before they reach the
receiver. This is called multipath transmission. A different distance means that
some signals are delayed more than others are. Even different frequency com-
ponents in ”one” path may be delay different than others in the same path. All
the signals are combined in the antenna and they form the received signal.

This type of channel is often modelled by the Rayleigh channel model. The
received signal is represented by:

r(t) =
NP−1∑

i=0

βis(t− τi) (3.1)

with:

i – path index

NP – total number of paths

s(t) – transmitted signal2

2s(t) and r(t) are bandpass signals.
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r(t) – received signal

τi – delay for path i

βi – complex gain of path i

All of the possible infinite number of radio waves are delayed a certain time
before they reach the receiver (see figure 3.5). It can be proven that, when the
transmitted signal is a pure sinusoid with no noise and no initial phase, so

s(t) = cos(ωct) (3.2)

with:

ωc – frequency of transmitted signal (radians/s),

the received signal r(t) is given by:

r(t) = A(t)cos(ωct + θ(t)) (3.3)

With amplitude A(t) is Rayleigh distributed and the phase θ(t) is uniform dis-
tributed (see [22]).

Transmitter
s(t)

Receiver
r(t)

1

 N

Figure 3.5: Rayleigh channel model

3.2.3 Delay spread and coherence bandwidth

In the previous section we have seen that propagation mechanisms cause the
receiver to receive multiple delayed and attenuated versions of the transmitted
signal. There are several ways to describe the multipath delay properties3 of
channels. The basis of an often found the description in literature, is the so
called power delay profile, the power of the received delayed signals is plotted
as function of its excess delay. The first version of the transmitted signal to
arrive at the receiver is said to have a excess delay of zero. So all delay times
are compared to the first arriving component.

The standard deviation στ of the delay of all paths is called RMS delay
spread and is a parameter that describes the type of fading in the channel. It

3The statistical properties of βi and τi.
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is important to make the difference between flat fading and frequency selective
fading clear. Flat fading means that all spectral components are affect by the
channel in a similar matter (see [22] and [23]).

Coherence bandwidth WC is defined as (see [22] and [23]):

WC =
1

2π · στ
(3.4)

It gives rise to a frequency range over which the propagation varies about 3 dB
and remains nearly flat.

When the delay spread is smaller than one tenth of the symbol duration
or when the bandwidth W of the transmitted signal is much smaller than the
coherence bandwidth:

στ <
1
10
· TS (3.5)

W ¿ WC (3.6)

a channel is said to exhibit flat fading, otherwise it is called frequency selective
fading (see [22] and [23]).

In table 3.1 some typical RMS delay spreads are given. From this table can
be concluded that the HiperLAN/2 OFDM system exhibits flat fading.

Table 3.1: Typical delay spreads (frequency range: 4 GHz – 6 GHz). These values are
found in [23].

Environment Maximum delay [ns]
Large building (i.e. Stock exchange) 120
Factory 125
Office building 130
Single office room 30

In section 2.7.3 we discussed the transmission of a cyclic prefix, before the
actual useful part of the symbol is transmitted. The cyclic prefix prevents that
attenuated and delayed versions of the previous signal interfere with the current
symbol. Note that the duration of the prefix is 800 ns, while the maximum delay
in an office building is 130 ns (see table 3.1).

3.2.4 Doppler shift and coherence time

Doppler frequency shift happens when radio waves bounce or scatter of moving
object or when the terminals are moving. In other words, Doppler shift causes
the path delays τi to become time dependent. In an indoor office environment
movements are generally very slow compared to the data rate and for practical
purposes the channel usually can be regarded as stationary.

Doppler shift fm is given by:

fm =
λ

v
(3.7)
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where λ is the wavelength and v the speed of the object, either transmitter,
receiver or reflecting object.

The maximum expected Doppler shift in an indoor office environment for
a system transmitting at 5 GHz and a maximum velocity of v = 2.5 m/s is
fm = 42 Hz (about 1 millionth % of the transmission frequency). This is prob-
ably a small value compared by frequency drifts of oscillators in transmitter
and receiver (see section 3.3.1). The effect that Doppler shift causes, is called
frequency dispersion.

Frequency dispersion can be translated to coherence time. This specifying
measure describes in what time period received signals have a strong correlation
in their amplitude. This is the time over which the channel can be seen time
invariant. There is no exact relation between the maximum Doppler shift and
coherence time, but [27] uses as approximate relationship:

TC =
0.423
fm

(3.8)

When we assume that fm = 42 Hz, the coherence time equals TC = 10.1 ms.
Thus the channel equalizer in a HiperLAN/2 receiver should be adaptive and it
should update at least once per 10.1 ms. Note that this time is long compared
to a HiperLAN/2 transmission burst of 2 ms (see [20] and [6]).

3.2.5 Transfer function

The above described statistical channel properties can be described with a com-
plex transfer function. For each delay time τ there is a different attenuation and
phase shift. Due to motion of objects the coefficients of the transfer function
change over time. The channels impulse response follows directly from equa-
tion 3.1:

h(t, τ) =
N−1∑

i=0

βi(t) δ ( t− τi(t) ) (3.9)

In [22] a simulation of such transfer function is given. It makes clear how the
filter coefficients can be calculated. The updating of the coefficients is defined
by the coherence time TC (see section 3.2.4).

3.2.6 Baseband description of the indoor radio channel

In this section we will find that the above discussed channel can be described
at baseband level. This has two advantages:

• The channel can be modelled at baseband level. This reduces the execution
time of a simulation, as discussed in the introduction of this chapter.

• The channel equalizer in the receiver can operate at baseband level, since
the real channel can be described at baseband level.
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The received signal is given by (noise and interference are discussed in section
3.2.7 and will be omitted here):

R(f) = S(f)H(f) (3.10)

Where H(f) is the transfer function of the channel.4

At the receiver we need to convert the bandpass signal r(t) to its complex en-
velope r̃(t), in order to decode the subcarrier symbols Cl (see equation 2.20). In
other words, the signal r̃(t) needs to be shifted in frequency domain with ±fr.5

We use an intermediate variable u(t) to investigate the effect of a frequency
shift:

u(t) = r(t)e−2πfrt (3.11)

Thus
U(f) = R(f + fr) (3.12)

Which equals, using equation 3.10 and 2.26:

U(f) =
1√
2
· [S̃(f) + S̃∗(−f + 2fr)] ·H(f + fr) (3.13)

0 2fc

|)(| fU

f

Figure 3.6: Spectrum of u(t) (see equation 3.13). A channel transfer function H(f) =
1 ∀ f is used for simplicity

The resulting complex spectrum of u(t) is plotted in figure 3.6. The figure
shows that the spectrum of the intermediate function u(t) has two parts: one
part centered at f = 0, and the other at f = 2fr, while the transmitted baseband
signal s̃(t) has only one component at f = 0. To get rid of the component
centered at f = 2fr an ideal lowpass filter can be used6:

Hr(f) =
{

1 −fκ < f < fκ

0 otherwise (3.14)

With
NST

2
∆f < fκ < 2fc − NST

2
∆f (3.15)

When a gain of
√

2 is applied, R̃(f) can be written as:

R̃(f) =
√

2 · U(f) ·Hr(f) (3.16)
4In this section we omit the fact that H(f) is dependent on τ . However, the analysis

remains valid for H(f, τ).
5In this section is assumed that fr = fs = fc.
6This component will usually be dissipated in the receiver hardware.
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Or
R̃(f) = S̃(f) · H̃(f) (3.17)

With H̃(f) the baseband equivalent of the transfer functions:

H̃(f) = H(f + fc) ·Hr(f) (3.18)

From the above (equations 3.17 and 3.18) can be concluded that the system
can be simulated at baseband using equation 3.18 as the transfer function of the
channel. This means also that the receivers channel equalization may operate
at baseband level.

3.2.7 Noise and interference

Our channel model is not yet complete. Other effects we have not taken in
account yet are noise η(t) and interference i(t) of devices transmitting in the
same frequency range as our system. The complete channel model is given in in
figure 3.7.

Channel
h(t,   )

n(t)

s(t)

i(t)

r(t)

Figure 3.7: Channel model with noise and interference

Noise is caused by a few phenomena [26]:

• Thermal noise in electrical components for example in the front-end of the
receiver

• Shot noise processes developed in electronic devices

• Electromagnetic radiation from earth, sun and other cosmic sources

The noise caused by these phenomena is commonly modelled as additive
white Gaussian noise. The Gaussian process η(t) has a zero mean and a con-
stant power spectral density of N0/2 [Watt/Hz] (in the frequency range we are
interested in), which equals the variation of the random process (see [10] and
[14]).

3.3 Analog hardware architecture of the SDR
receiver

In figure 3.8 the analog hardware configuration of the software defined radio
project (see [17] and [28]) is shown. The task of this hardware is to create
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complex, time discrete samples, that represent the base band HiperLAN/2 signal
in the radio band of interest. This task is done by filtering the antenna signal,
amplifying the signal with a low noise amplifier (LNA), down mix the signal to
baseband and to filter unwanted components from the signal. Finally the signal
is sampled.

Mixer
Bandpass

filter
LNA

r(t)

)2cos( tfr 

)2sin( tfr 

Lowpass
filter

Lowpass
filter

ADC

ADC

Re{r[k]}

Im{r[k]}

~

~

Re{u[k]}

Im{u[k]}

Figure 3.8: Software defined radio receiver hardware (see [17])

In the following sections some distortions caused by the analog hardware are
discussed. The analog hardware is currently being developed, so at this point in
time a characterization of the hardware is not yet available (see [28] for some
preliminary results). In this report we will assume that the bandpass filter and
the amplifier are ideal.7 In other words, no non-linear distortions are expected,
that can not be solved by the channel equalizer in the receiver (see section 4.10).
The distortions that will be discussed in this report are: frequency offset, phase
offset and phase noise.

The hardware of the receiver (see figure 3.8) is driven by a frequency source,
usually a voltage controlled oscillator (VCO). At this moment in time, the char-
acteristics of the reference frequency source of the receiver in the SDR project is
not yet determined. In [31] some important parameters of VCO’s are explained.
Most important parameter to this and the following section is the spectral purity
of the oscillator. It tells how close the frequency of the oscillator will be to its
intended frequency and how stable this frequency is.

The oscillator determines the operation of the mixer that mixes the incoming
signal to baseband and it determines the time-base of the receiver, in other words
the sampling frequency of the analog to digital converter (ADC ).

7OFDM has a high peak-to-average power ratio, hence a good linearity is expected of the
amplifiers in the system (see [12], [23], [24], [29] and [30]).
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3.3.1 Frequency offset

In this section we will determine the influence of a frequency offset in the mixer
on the performance of the HiperLAN/2 system.

Assume that there is a difference between the carrier frequency in the trans-
mitter and the receiver of f∆

8. Then

fr = fs + f∆ (3.19)

If we substitute this in equation 3.11, this results in:

u(t) = r(t)e−2π(fs+f∆)t (3.20)

Since
r(t) =

√
2 · <{s̃(t)e2πfst} ? h(t) (3.21)

we can write for u(t) in the frequency spectrum:

U(f) =
1√
2
· [S̃(f + f∆) + S̃∗(−f + 2(fs + f∆))] ·H(f + fs + f∆) (3.22)

Thus, after applying the ideal lowpass filter and a gain of
√

2 (see section 3.2.6),
the baseband signal r̃(t) evaluates to:

r̃(t) =
(
s̃(t) e−2πf∆t

)
? h̃(t) (3.23)

From the equation above can be concluded that a frequency offset can be de-
scribed at baseband level as a time varying rotation of the transmitted complex
baseband samples.

At this point we assume that the subcarrier values are retrieved from the
sampled version of the baseband signal r̃(t) by applying a discrete Fourier trans-
formation (DFT ). We will also assume that the frequency offset f∆ is smaller
than the subcarrier spacing ∆f (see section 2.7.2). A received subcarrier value
Ĉl is given by:

Ĉl =
1
N

N−1∑

i=0

r̃[i] e−2π i l
N (3.24)

If equation 3.23 is substituted in the equation above, this yields in9:

Ĉl =
1
N

N−1∑

i=0

s̃[i] e
−2π

f∆
fsample

i
e−2π l

N i (3.25)

The transmitted subcarrier value Cγ gives rise to the transmitted complex base-
band signal10 (see also equation 2.16):

s̃[i] = Cγ e2π γ
N i

∣∣∣
i=0 ... N−1

(3.26)

8Note that this frequency difference is not time dependent. Any time dependent changes
will be represented as phase noise (see section 3.3.2).

9For simplicity the assumption h(t) = δ(t) is made.
10We assume that only subcarrier γ is not equal to zero.
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When equation 3.26 is substituted in equation 3.25 and the relation fsample =
N ∆f is used, the result is:

Ĉl =
1
N

N−1∑

i=0

Cγ e
2π i

N

�
γ−l− f∆

∆f

�
(3.27)

Note that when no frequency offset is present (f∆ = 0), the received subcarrier
value equals the transmitted subcarrier value Ĉl = Cγ only if l = γ.

From equation 3.27 can be concluded that a frequency offset causes inter-
subcarrier interference. If a frequency offset is present of for example f∆ =
1/10 ∆f = 31.250 KHz, and Cγ = 1, the received subcarrier Ĉl=γ will be
slightly less than the transmitted subcarrier value and some of its energy will
flow to neighboring subcarriers (see figure 3.9).
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Figure 3.9: Influence of frequency offset on subcarriers; a) no frequency offset present
and b) a frequency offset of f∆ = 1/10 ∆f = 31.250 KHz. These results are calculated
with equation 3.27.

The HiperLAN/2 standard [8] defines that:

fc − fs

fc
< 0.002 % (3.28)

If we assume an equal demand for fr compared to fc, f∆ may be up to 250 KHz.
A quick calculation with equation 3.27 shows that at this frequency offset almost
all power of a transmitted subcarrier is found in the neighboring subcarrier in
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the receiver; large bit errors rates will occur. From this follows that the receiver
should try to compensate for frequency offsets.

In figure 3.10 the power that spills into a neighboring subcarrier in the
direction of the frequency offset is plotted. Note that the transmitted power
on the subcarrier equals 1. This is calculated with equation 3.27 (see also [24]
chapter 21).
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Figure 3.10: Influence of frequency offset on neighboring subcarrier in direction of
the frequency offset

3.3.2 Phase offset and phase noise

The second type of distortions, that are caused by the process of down mixing
the received bandpass signal to baseband, are phase disturbances in the down
mix signal. In this section we will assume that there is no frequency offset present
and that the mixers in the transmitter do not cause any phase disturbances.

Phase noise causes the performance of the system to decrease by two effects:
loss of orthogonality of the subcarriers (analog to a time dependent frequency
offset) and a common phase offset to all subcarriers. To describe these effects
independently, we will divided the phase of the mixer compared to the mixer in
the transmitter into two parts: a part that remains equal throughout an OFDM
symbol, ψ0 and a time varying part, ψ(t).

For u(t) we can write:

u(t) = r(t)e−2πfrt+ φ(t) (3.29)

with φ(t) = ψ0 + ψ(t). First we will discuss the time independent part of the
phase offset. Using a modified version of equation 3.23, the effect of the time
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independent phase offset can be seen:

r̃(t) =
(
s̃(t) e ψ0

)
? h̃(t) (3.30)

Assume that h(t) = δ(t). The effect of this phase rotation on the demodulated
subcarrier values can be calculated using (modified) equations 3.25 to 3.27:

Ĉγ = e ψ0Cγ (3.31)

From this can be concluded that a time independent phase offset causes a phase
rotation in the subcarrier values, that is equal to all subcarriers. This phase
offset can result in a great reduction of the performance of the HiperLAN/2
system, because the entire constellation gets rotated, resulting in a high bit
error rate. A receiver implementation should keep track of the common phase
rotation and correct the distortion. The common phase rotation can be measured
by the receiver by using pilot carriers (see section 2.7.1), since they are equally
disturbed by the common phase offset.

The effect of the time dependent phase offset, so called phase noise or phase
jitter, is much harder to describe, since it is a statistical process, that is dictated
by the actual implementation of the mixer. Good descriptions are found in [24],
[32] and [31]. In this report we will assume that ψ(t) is the outcome of a Gaussian
random process with mean zero and variation σψ

2 (see also [24] section 19.6). We
will use this only to proof that phase jitter causes inter-subcarrier interference.

Equation 3.30 (with h(t) = δ(t)) can be rewritten for a time dependent phase
offset (in sampled form) as:

r̃[i] = s̃[i] e ψ[i] (3.32)

This results in the following demodulated subcarrier values (see also equa-
tion 3.27):

Ĉl =
1
N

N−1∑

i=0

Cγ e 2π i
N (γ−l)+ ψ[i] (3.33)

Figure 3.11 shows the inter-subcarrier interference that is caused by a phase
jitter with σψ

2 = 0.01 [rad2]. In the figure only one subcarrier value is trans-
mitted. When these results are compared with the results of frequency offset
(see section 3.3.1), we see that frequency offset introduces inter-subcarrier in-
terference locally, while phase jitter causes inter-subcarrier interference in all
subcarriers.

The inter-subcarrier interference can cause a great decrease in system per-
formance. Hence in the designing of the receiver hardware, mixers with great
spectral purity should be chosen.

A practical implementation of the above discussed complex mixer is that
two mixers are used and in fact this implementation is drawn in figure 3.8. The
phase difference between these mixers should be π/2. An error in this phase
difference can be corrected with a channel equalizer (see [23] and [24]).
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Figure 3.11: Influence of time dependent phase jitter on subcarriers; a) No phase
noise present and b) Gaussian phase noise (σψ

2 = 0.01 [rad2]). These results are
calculated with equation 3.33.

3.4 Sampling the signal

Before the baseband signal is sampled, a lowpass filter is applied. This filter has
two functions: anti-aliasing filter and coarse channel selection filter.

As initial design a 7th order Butterworth filter has been designed (see [17]).
The filter has a cut-off frequency of 10 MHz. Its measured transfer function
is plotted in [28] and figure 3.12 shows the theoretical transfer function of the
filter. From this figure can be concluded that the filter does have a influence on
the subcarriers.

The lowpass filtered baseband signal is sampled at fADC = 80 MHz using
a 12 bit analog to digital converter (see [17]). The ADC can be modelled as a
zero-order sample and hold, followed by a quantizer and a signal limiter (see
also [14] and [10]).

3.4.1 Symbol window drift

Because the sampling clock of the receiver hardware will not be synchronized
with the timing in the transmitter, the symbol window in the receiver may slowly
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Figure 3.12: Theoretical transfer function of the anti-aliasing filter used in Hiper-
LAN/2 receiver of SDR project (see [17] and [28])

wander away from the ideal symbol window, if the receiver does not adapt. A
not perfect alignment, of the useful data part window –the symbol window–
and the observation window used in the receiver, results in a large decrease of
the performance of the system. In this section we will have a closer look at the
effects of symbol window drift.

The HiperLAN/2 standard [8] defines that the transmitter should use one
frequency source for carrier frequency fs generation and clocking the time-base,
fsample. This frequency source should have a accuracy of ± 0.002 % (see equa-
tion 3.28). If we demand the same time-base accuracy for the receiver, this may
lead to a drift of ≈ 1 sample per 300 OFDM symbols.

As explained in section 2.7.3, an OFDM symbol contains a cyclic prefix and
a useful part. The ideal useful data part window of symbol n, is located between
nTS +TCP ≤ t < (n+1)TS . We will denote the sample frequency in the receiver
as fsampleR

and the sample frequency in the transmitter as fsampleT
.

If we assume a sampling clock offset:

χ =
fsampleT

− fsampleR

fsampleT

(3.34)
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Figure 3.13: Definitions in the explanation of the effect of timing errors. a) fsampleR >
fsampleT , b) fsampleR < fsampleT and c) fsampleR = fsampleT . Figures a) and b) show
the expected timing in the receiver, while c) shows the actual timing.

we can write for the time-base t′ in the receiver11:

t′ = (1 + χ)t (3.35)

The symbol window will appear to be drifting in the receiver, because, if the
receiver does not adapt for the difference in sample frequencies, the symbol is
expected to lie in:

(nTs + TCP )(1 + χ) ≤ t < (n + 1)Ts(1 + χ) (3.36)

This results in a timing error of 12:

terror = (nTs + TCP )χ (3.37)

Figure 3.13 c) shows the timing of the transmitter. This is the signal that is
actually transmitted. Figures 3.13 a) and 3.13 b) show what the time-base in
the receiver expects to have received. Note that in a.) inter-symbol interference
occurs.

The effect of a timing error on the subcarrier values, can be determined by
writing:

r̃(t′) = s̃(t− terror) (3.38)

The sampled version of this signal is given by:

r̃[i] = s̃[i− ierror] (3.39)

with
ierror = terror fsampleR (3.40)

Applying DFT to equation 3.39 results in:

Ĉl =
1
N

N−1∑

i=0

Cγ e 2π i−ierror
N γ e− 2π i

N l (3.41)

11Note that the time-base in the transmitter is assumed to be the correct one.
12In this analysis the fact that the observation window has a different length than the

symbol window is omitted. This difference in length will be negligible compared to the error
a timing error causes.
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Rearranging of the powers of e makes the influence of a timing error on the
subcarrier values clear:

Ĉl =
1
N

N−1∑

i=0

Cγ e− 2π ierror
N γ e 2π i

N (γ−l) (3.42)

Thus
Ĉγ = Cγ e− 2π ierror

N γ (3.43)

From the above can be concluded that each subcarrier value is rotated with an
angle that is dependent on the subcarrier number. This analysis is also valid
for timing error that are caused by other reasons than symbol window drift
(for example synchronization errors). Note that a timing error of ierror samples
means that the rotation over all subcarriers is in total 2π ierror.

A timing error can cause a great decrease of the systems performance. For
example, assume a timing error of one sample. In that case the outmost carriers
(l = −26 or l = 26) will be rotated almost ±π, which –of course– causes a large
number of incorrectly received bits. A receiver implementation should be able
to compensate for symbol window drift.

3.5 Digital channel selection

In [33] three digital filter designs are proposed to perform channel selection
operations for HiperLAN/2. In this report we will not design a channel selection
filter for the system, but we will merely try to find out what the distortions are
caused by the filter. Besides the large reduction of signal components that can
cause interference, a channel selection filter will also disturb the signal in the
band of interest. The overall channel selection requirements for HiperLAN/2 are
shown in figure 3.14 (see [2]).
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Figure 3.14: HiperLAN/2 overall channel selection requirements (see [8] and [2])

In this report we will only have a look at the influence of one of the three
digital channel selection filters on the subcarrier values; the so called initial

52



design. table 3.2 show the parameters that where used for the channel selection
filter. See [33] for more information about the design of the filter. figure 3.15
shows the transfer function of the filter. The transfer function shows clearly
a wobblyness in the frequency band of interest; it will certainly disturb the
subcarrier values. Luckily the disturbance is constant and known, so it is easy
for the receiver to compensate for this distortion.

Table 3.2: Digital channel selection design parameters (see [33])

Sample frequency 80 MHz
Pass-band frequency 8.28125 MHz
Stop-band frequency 11.71875 MHz
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Figure 3.15: Transfer function of the initial design digital channel selection filter (see
[33])

After the filtering of the signal with the digital channel selection filter the
signal is down sampled (see [13]) to fsampleR

= 20 MHz.
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3.6 Digital hardware architecture of the SDR
receiver

When designing an algorithm, we often start with an ideal mathematical model
of the functionality that the algorithm should perform. At this stage, ideal math-
ematical operations with infinite precision are assumed. However, an implemen-
tation of a HiperLAN/2 receiver for the software defined radio project will use
arithmetic logic units (ALU’s) to perform operations like additions, multiplica-
tions and others. These ALU’s will be implemented in hardware and will not
work with infinite number precision, because the numbers are represented with
a finite number of bits.

The outcome of operations applied to binary numbers, can not always be
represented by the finite number of bits; the result is rounded or truncated. This
will cause an addition of noise to each operation, that an algorithm describes;
the outcome of the algorithm will be different than the intended outcome.13

This error (or propagation of the error) in the outcome of an operation is called
computational noise (see [18]) and will distort signals in the receiver.

It is not easy to determine the influence of computational noise on the bit
error rate of the HiperLAN/2 system, because not only the subcarrier values
are disturbed by computational noise, but also synchronization algorithms etc.

In this section we will discuss the modelling of computational noise. Since
the receiver model will also be implemented in software –and thus will be using
an ALU, to calculate the outcome of operations–, the computational noise must
be simulated using the simulator’s ALU. This limits the maximum precision,
that can be simulated.14

In the next section a general binary number representation will be explained.
This representation can be used to represent relevant number types for the Hiper-
LAN/2 receiver implementation. section 3.6.5 describes the model of the ALU
used for simulation purposes to determine the influence of computational noise.

3.6.1 General binary number representation

Digital number representations that are used by ALU’s, to perform operations,
are groups of bits, in which each bit has a distinguished value it represents. There
are several methods how these bits can be ordered in memory. In modelling the
HiperLAN/2 receiver we are only interested in truncation and rounding errors
and not in the exact implementation of numbers and their ALU’s. Therefore we
will use a general binary number representation.

In general, binary numbers can be represented by a bit group

s0 m0m1 . . . mi . . .mn−1 s1 e0e1 . . . ej . . . ep−1 (3.44)

with:
13In example we want to calculate: y = (a+b) c, but the result we get is ŷ = (a+b+η1)c+η2.
14A higher precision means that the error caused by computational noise is smaller.
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m0...n−1 – n mantissa bits

e0...p−1 – p exponent bits

s0,1 – signs bits of the mantissa and exponent

The group of bits from equation 3.44 evaluates to the decimal value:

±(m0m1 . . .mg .mg+1 . . .mn−1)2 2±(e0e1...ep−1)2 (3.45)

Usually, a point is assumed at a certain position in the mantissa bits. In this
document I define the position of the point g to be the number of the mantissa
bit that is directly in front of the point. Because there are no bits reserved in
the number itself for indicating the position of the point, the point position is
always implicitly defined for a certain ALU. The operation (.)2 is defined as (see
[19]):

(b0b1 . . . bg . bg+1 . . . bv−1)2 = 2−v+g+1
v−1∑

i=0

bi 2v−i−1 (3.46)

In example (10.01)2 evaluates to (v = 4 and g = 1):

(10.01)2 = 2−2 (8 + 1) = 2.25 (3.47)

The general description of binary numbers given in equation 3.44, can be
used to represent number types – relevant to HiperLAN/2 physical layer model–,
known from the programming world (see [19]):

• Integer numbers

• Fixed point numbers

• Floating point numbers

These types will be discussed in the next sections.

3.6.2 Integer numbers

Integers represent a limited selection of signed natural numbers (for example
numbers like −43 and 56). This type of numbers can be represented by the
general notation in equation 3.44 by setting the number of exponent bits to
zero (p = 0). The second sign bit s1 is not used and the location of the point
will be set to the most right position: g = n− 1.

The maximum value that can be represented, is:

2n − 1 (3.48)

and the minimum value:
−2n + 1 (3.49)

Note that the value 0 can be represented twice (with positive sign and negative
sign).

55



3.6.3 Fixed point numbers

Fixed point numbers differ from integers by the location of the point. The point
is placed somewhere within the n mantissa bits instead of at the most right
position. This means that fixed point numbers can represent a limited selection
of real numbers. The numerical distance between two neighboring fixed point
numbers is always equal, namely 2n−g−1.

3.6.4 Floating point numbers

This number type is used to represent a limited selection of real numbers. This
number type is build of a fixed point number and an integer representing an
exponent value. Usually the point is located before the first mantissa bit (g =
−1). Although other mantissa and exponent combinations are valid, the most
efficient way of choosing an exponent number is that the mantissa bit m0 is
always 1. In that case, the most bits in the mantissa are left to represent a
number. If the bit m0 is always 1, it is a waste of space to store this bit in
memory. This bit can better be used to gain extra precision on the number.
When this is done the first 1 in the number is called hidden bit and the number
is assumed to represent the decimal value (see [19]):

±(.1m0m1 . . . mn)2 2±(e0e1...ep.)2 (3.50)

A drawback of the hidden bit is that the decimal number 0 can not be
represented. In this report we will assume that one of the two combinations for
0 in the integer exponent number is used to represent the number 0.

The numerical distance between two neighboring floating point numbers is
not always equal. This distance depends on the decimal value of the exponent.

The maximum number that can be represented, is calculated by setting all
n mantissa bits and all p exponent bits to 1:

2−m(2
Pp−1

j=0 2p−j

)(
n−1∑

i=0

2n−i) (3.51)

This equation can be simplified to:

2−m2D(2m − 1) (3.52)

With D the upper limit of the exponent, defined as (see equation 3.48)

D = 2p − 1 (3.53)

Note that integers and fixed point numbers are special cases of floating point
numbers. This will be used in the next section to make a model of truncation
and rounding that takes place in an ALU.
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3.6.5 Arithmetic logic unit model

In the sections above we have seen a general binary number description, that
can be used to describe integers, fixed point an floating point numbers. In this
section I will describe a general algorithm that can simulate an ALU on a ALU
with a higher precision.

First of all we must prove that all possible numbers on ALU A, can be
represented on ALU B, that has a higher precision. This proof is quite trivial
and can easily be seen from equation 3.45:

CA[x] = ±(.m0m1 . . . mnA−1)22±(e0e1...epA−1)2 (3.54)

CB [x] = ±(.m0m1 . . . mnB−1)22±(e0e1...epB−1)2 (3.55)

Where:

CA[x] – representation of x on ALU A

CB [x] – representation of x on ALU B

CA[x] can be mapped on CB [x], if nB ≥ nA and pB ≥ pA, namely

CA[x] = ±(.m0m1 . . . mnA−100 . . .)22±(00...e0e1...epA−1) = CB [x] (3.56)

The last nB − nA mantissa bits and the first pB − pA exponent bits of CB [x]
are set to zero.

To simulate truncation and rounding errors, we must truncate or round a
number with a higher precision CB [x] to CA[x]. Note that we use the decimal
representation of CA[x] and CB [x] in the remainder of this section.

The following algorithm is capable of mapping CB [x] on CA[x]:

• Determine the sign’s of the mantissa and the exponent (s0 and s1 in equa-
tion 3.44)

• Determine the exponent of CB [x]:

(exponent)10 = ceil(log2(|CB [x]|))− g (3.57)

The resulting exponent should fall in the range −D ≤ exponent ≤ D (see
equation 3.53), otherwise an underflow value 0 or an overflow value of
equation 3.51 should be returned.

• Calculate the number that has to be represented by the mantissa, using
the following formula:

(mantissaB)10 =
|CB [x]|

2exponentB
(3.58)
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• Calculate the closest mantissa that can be represented by CA[x] to mantissaB

of equation 3.58. RemainderB will be used to keep track of the difference
between mantissaA and the number to represent. At the start it will be
set to:

remainderB = mantissaB (3.59)

Repeat for all nA bits:

2nA−i ≥ remainderB (3.60)

with i, representing the current bit number. If this is valid, then calculate
the new remainder of the number CB [x]:

remainderB = remainderB − 2nA−i (3.61)

and update the mantissa of CA[x]:

mantissaA = mantissaA + 2nA−i (3.62)

• When a rounding machine is used, the value of mantissaB should be
compared with the decimal value of one bit to the right of the last bit:

mantissaB ≥ 2−nA−1 (3.63)

If this is valid, mantissaA should be updated:

mantissaA = mantissaA + 2−nA (3.64)

• Finally calculate the truncated or rounded number CA[x] of CB [x], after
restoring the mantissa sign:

CA = ±mantissaA2exponentA (3.65)

The above described algorithm is implemented in C++ and is used to sim-
ulate ALU’s on a simulating machine with a better machine precision. After
every operation and after loading a number into memory the algorithm above is
executed. The source code is printed in [7] section A.3.1 and A.3.2. The model
also keeps track of the number of operations that has been carried out.

3.7 Conclusion

This chapter discussed signal distortions to the transmitted HiperLAN/2 signal
caused by the indoor radio channel, the receiver hardware and the digital channel
selection filter.

The following conclusions are drawn in this chapter:

• Reflection, scattering and diffraction cause the receiver to receive attenu-
ated and delayed versions of the transmitted signal. This is modelled with
the Rayleigh channel model. Literature states that this is a suitable model
of the HiperLAN/2 indoor radio channel (see [22], [25] and [26]).
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• The maximum delay spread in the HiperLAN/2 transmission band is typi-
cally 130 ns. The cyclic prefix of a OFDM symbol is long enough to combat
inter-symbol interference caused by the delay spread.

• Since the HiperLAN/2 terminals or objects in the proximity of the termi-
nals will only move at walking speed, the Doppler shift (≈ 42 Hz) will be
negligible to the allowed carrier frequency offset of 250 KHz. The move-
ments will causes the channel to change over time. A channel equalizer in
a receiver implementation should be adaptive and should be updated at
least once in 10 ms. The channel can be described at baseband level, thus
the channel equalizer may also operate at baseband level.

• The receiver hardware creates baseband samples of the received signal.

• Impurities in the down mix frequency can be divided in: frequency offset,
common phase offset and phase noise. A frequency offset causes local inter-
subcarrier interference locally, while phase noise causes inter-subcarrier
interference with all subcarriers. Common phase offset causes a phase
rotation equal to all subcarriers. The receiver should compensate for the
distortions made.

• The analog to digital converter introduces quantization noise. The anti-
aliasing filter distorts the subcarrier values.

• A difference in sample length between HiperLAN/2 transmitter and re-
ceiver causes symbol window drift. This cause a phase rotation of the
subcarrier values that is dependent on the subcarrier number.

• The digital channel selection filter gives rise to errors in the subcarrier
values. Since these disturbances are known, the receiver can easily correct
the errors.

• The receiver uses an ALU to perform calculations. The ALU has a finite
precision. This causes computational noise to signals in the receiver. A
model of an ALU has been presented, that can simulate computational
noise.
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Chapter 4

Receiver Model Algorithms
and Implementation

4.1 Introduction

In the previous chapters is discussed how bits are converted to a signal at a
specified carrier frequency and how this signal can be distorted, by the radio
channel and the hardware of transmitter and receiver. This chapter describes
the ”cures” of these distortions and the implementation of these solutions in the
receiver model. In chapter 5 the implementations will be put to the test.

In section 4.2 the architecture of the demodulation part in the receiver is
outlined (see also figure 3.1). It summarizes what functions should be imple-
mented, based upon the finding of chapters 2 and 3 and how the execution
order of those functions is decided.

The remaining sections in this chapter explain the functions that are imple-
mented in the receiver model.

4.2 Receiver architecture

In chapter 2 the functionality of the physical layer on the transmitter side is
discussed. The receiver not only has to convert the received signal to data bits
by performing the inverse of the transmitter, but it also has to try to inverse
distortions caused by radio channel and hardware of transmitter and receiver.
In this section we will deduce the execution order of the not yet described
operations in the receiver.

The receiver can roughly be divided into two parts:

• Time domain part. In the first stage of the transmitter, signal functions

60



will be time domain functions.

• Frequency domain part. In the second stage of the receiver signal functions
will be frequency domain functions, because of the IDFT that is necessary
to retrieve complex subcarrier values.

Most operations can be performed in time domain and in frequency domain.
Consider as an example frequency offset correction. In the time domain, a fre-
quency offset can be corrected by multiplying the received signal with a complex
time-dependent power of e, while in the frequency domain a frequency offset can
be corrected simply by shifting the spectrum (see section 3.3.1). In the latter
case a frequency offset can only be corrected in steps equal to the frequency
resolution of one IDFT bin. In practice we might want to be able to correct in
smaller steps.

The location of the functions in the receiver architecture in this study will be
based upon a trade-off between the necessary resolution that must be reached
for a certain correction and the solution with the minimum number of opera-
tions. By deciding the execution order of the functions, we will also try to keep
corrections independent of each other. Note that to a large extent the order of
the functions is already dictated by the definition of the transmitter in chapter 2.

Figure 4.1 shows the receiver architecture that is proposed in this study. The
following sections discuss the reason for the location of the functions as well as
the algorithms behind the functions.

From chapters 2 and 3 can be concluded that an implementation of the
physical layer in the HiperLAN/2 receiver should at least contain the following
functions:

• Synchronization function

• Frequency offset corrector

• Phase offset corrector

• Channel equalizer (partly implemented in the model)

• Inverse OFDM

• Demapping

• Deinterleaving (not implemented in the model)

• Viterbi-decoder (not implemented in the model)

• Descrambling (not implemented in the model)

In figure 4.1 other functions are also shown. Those will explained below.

After the functions were implemented, the receiver model was tested. It
passed its functional test (see [28]).
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Figure 4.1: Demodulator part of the receiver (see figure 3.1)

4.3 Serial to parallel conversion

One OFDM symbol is –in the ideal case fsample = 20 MHz– represented by 80
input samples, so once per 80 samples the receiver will have enough information
to demodulate the received samples and output the resulting bits. The main
demodulation function of the receiver, an IDFT, works with parallel data instead
of the serial data generated by the hardware of the receiver. Hence we will create
a vector of at least 80 received samples, containing the oldest sample at the top
of the vector and the newest sample at the bottom.

At this point in the receiver, the timing of the OFDM symbols is unknown
and therefore each incoming sample has to be stored by throwing out the oldest
sample in the vector, shifting all samples one position upward and storing the
received sample at the bottom of the vector. A cyclic buffer can perform this
function efficiently, because the index of the samples change rather than shifting
the samples in memory. This is illustrated in figure 4.2. A cyclic buffer needs
one extra storage location compared to a vector to store the location of the top
of the vector.

The source code of the serial to parallel conversion using a cyclic buffer is
printed in [7] section A.3.1.
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Figure 4.2: Illustration of a cyclic buffer; a) Initial state. b) A new sample overwrites
the oldest sample and the top of the vector is moved one position

4.4 Synchronization

Synchronization between transmitter and receiver is an important issue for
HiperLAN/2. A small timing error can cause large errors in the demodulated
bits (see [30]). A HiperLAN/2 transmission burst is always proceeded by a
known sequence of special OFDM symbols –the preamble– as was discussed in
section 2.8. This information can be used to detect the beginning of an OFDM
symbol train, that contains information for higher protocol layers.

The task of the synchronization entity can be divided into three separated
functions: detecting the beginning of a burst, detecting the preamble parts and
tracking the symbol window drift. The synchronization entity signals the con-
troller of the receiver when its state should be changed. We define the following
receiver states:

• START: the initial state of the controller in the receiver. It is waiting for
a transmission to begin.

• PREAMBLE A: A possible beginning of a transmission has been detected.
The receiver is trying to find preamble section A in the incoming samples.

• PREAMBLE B: The receiver detected preamble section A in its input sam-
ples. It is trying to detect preamble section B in the incoming input sam-
ples. There are two types of preamble section B (see section 2.8), so this
receiver state will be divided in two separated states: PREAMBLE B LONG
and PREAMBLE B SHORT.

• PREAMBLE C: The receiver detected preamble section B in its input sam-
ples. It is trying to detect preamble section C.

• DATA: Preamble section C was detected. The receiver is currently receiv-
ing regular OFDM symbols that need to be demodulated.
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The state transitions differ per burst type (see section 2.8). Figure 4.3 shows
the state transitions that take place in the controller depending on synchroniza-
tion information.

START

PREAMBLE A

PREAMBLE B
SHORT

PREAMBLE C

DATA

START

PREAMBLE C

DATA

a) b)

*
#

START

PREAMBLE B
SHORT

PREAMBLE C

DATA

START

PREAMBLE B
LONG

PREAMBLE B
SHORT

PREAMBLE C

DATA

c) d)

Figure 4.3: Receiver state transition for: a) Broadcast burst, b) downlink burst, c)
uplink burst with short preamble and d) uplink burst with long preamble or direct link
burst. When a transmission or preamble has been detected (*), the state advances.
When a timeout occurs (#) the state is reset to state START

The next sections will discuss how the beginning of a burst can be detected,
how the preambles can be detected and finally how the synchronization function
can keep track of symbol window drift.

4.4.1 Detecting a transmission

The beginning of a transmission can be detected by measuring the input signal
power. When this power is higher than a predefined noise power threshold, a
burst might be transmitted. The state of the transmitter is advanced to an
appropriate state (see figure 4.3).

To prevent that the receiver triggers on possible high power noise spikes, the
average power over a few samples should be compared to a predefined threshold.
In the receiver implementation the average power of the last 16 input samples
is used.

4.4.2 Detecting preamble sections

After a possible start of a transmission has been detected, the preambles must
be detected. At this point in the receiver no distortions are yet corrected, so
a robust method must be chosen to detect the preambles. In literature the
detection of preambles is often done by a matched filter.

Preamble sections A and B contain parts of 16 samples that are equal to
each other, apart from sign changes that are not considered, and therefore a 16
sample wide matched filter should be used (see figure 4.4).
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Figure 4.4: Matched filter for detection of 16 sample parts in preamble sections A
and B (see section 2.8). The normalization step, discussed in the text, is not drawn

Before the outcome of the matched filter is calculated, both input samples
and preamble samples calculated in the receiver are normalized. This prevents
that the outcome of the filter is different, when the power of the input signal
changes. Mathematically we calculate the absolute value of the cosinus of the
angle between a vector ~vinput, that contains the last 16 input samples and a
vector ~vpreamble, that contains the first 16 samples of preamble section A or B.
The cosine rule is given by (~a, ~b ∈ Cn):

cos(ϑ) =
~a ·~b
|~a| |~b|

(4.1)

With (b∗i is the complex conjugate of bi):

~a ·~b =
n−1∑

i=0

ai b∗i (4.2)

and
|~a| =

√
~a · ~a (4.3)

Thus the matched filter calculates:
∣∣∣ ~vinput · ~vpreamble

|~vinput| |~vpreamble|
∣∣∣ = | cos(ϑvinput,vpreamble

)| (4.4)

The more correlation exists between the received samples and the expected
samples, the closer the angle ϑvinput,vpreamble

will approach zero, and the closer
the output value of the filter will be to 1.0.

The output of the filter, when it is used to find preamble section A in the
input samples, is drawn in figure 4.5. The figure shows clearly the spikes to
the value 1.0, when the preamble section parts have been matched. When the
output of the filter is compared with a threshold value less than 1.0 for detecting
a match, the system can be made more robust against distortions in the input
signal. Figure 4.6 shows the output of the filter for a signal to noise ratio1 of 1.5
dB; we clearly must be satisfied with less correlation between input samples and
expected input samples, but still the preamble section parts can be detected.

1Signal to noise ratio is defined as σ2
preamble/σ2

noise.
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Figure 4.5: Absolute value of the output of matched filter, when it is used to detect
preamble A section parts A IA A IA IA. The filter output is compared with a threshold
value to make a decision. In this figure any threshold between ≈ 0.6 and 1 will correctly
detect the preamble sections

When the distance between the filter output peaks is larger or smaller than
expected2, the receiver state is reset to state START.

Preamble section B can be detected in the same manner as preamble section
A. Preamble section C can be detected by using a 32 sample wide matched
filter and detecting three times the cyclic prefix part of C. The source code,
used in the receiver model for detecting the preamble sections, is printed in [7]
section A.5.3.

Once an entire preamble section is received, another function in the receiver
can use the information in the preamble section to gather information about
distortions it should correct.

4.4.3 Tracking symbol window drift

section 3.4.1 discussed the cause of symbol window drift. The cyclic prefix of a
data OFDM symbol contains a copy of the last 16 samples of the useful data
part of the symbol. This extra information can be used to find the beginning
of the symbol in a vector of input samples. In the model described in this
chapter, I use the same principle as for detecting the preamble section parts (see
section 4.4.2): a matched filter. This time the transmitted data is not known to
the receiver, therefore the correlation is calculated between 16 samples and 16
samples received 64 samples earlier.

It would be a waste of calculation power to calculate this correlation for
2The implemented model allows one sample time deviation of the expected distance, since

we expect a drift of 1 sample per 300 OFDM symbols (see section 3.4.1). Note that the sample
frequency of the receiver hardware can not be adjusted by the software.
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Figure 4.6: Absolute output of the matched filter, while detecting preamble section
A (SNR = 1.5 dB). Less correlation exists between input samples and expected input
samples

each incoming sample and therefore an estimate is made for the location of the
symbol start: the Expected start of symbol. The controller uses this estimate
for the moment in time to trigger a symbol window tracking and demodulation
cycle.

So far the length of the cyclic buffer –described in section 4.3– has not been
discussed. In this report I have chosen for a length 96 cyclic buffer. This gives
the symbol window the opportunity to move eight samples in both directions,
since a symbol has a length of 80 samples.

The symbol window tracker provides the following information to the con-
troller of the receiver:

Start of symbol – Index in the cyclic buffer that contains the first sample
of the prefix of the current symbol. This index is found using a matched
filter, which will be described below.

Decode stop – Tells the receiver when the next demodulation cycle is due.
This also provides an estimate for the start of the next symbol (see below).

Difference – This represents the difference between estimated start and found
start of the symbol. Large differences tell the controller that synchroniza-
tion failed.

Figure 4.7 outlines the contents of the cyclic buffer when the demodulation
cycle is due. It also shows the (fixed) relation between the decode stop, the
expected start of the symbol and the search area for the start of the symbol.
Note that in this approach there is always a delay of about eight samples after
the last received sample of a symbol and the actual demodulation.
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Figure 4.7: Contents of cyclic buffer at the moment of searching for the symbol
window. In a) no symbol window drift is present. The expected start of the symbol is
equal to the start of the symbol. b) shows the contents of the buffer if symbol window
drift is present
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Sixteen times the outcome of the matched filter is determined, each time
advancing one sample3. The maximum correlation indicates the location of the
prefix: the Temporary start of the symbol. Noise and other distortions may
cause that the correlation at locations close to the start of the symbol is higher
than at the start of the symbol4. This results in an incorrect temporary start of
the symbol. The number of samples at which the symbol window might move,
is about one sample per 300 OFDM symbols (see section 3.4.1). In the receiver
model discussed in this report, the movement of the symbol window is restricted
by calculating the mean displacement in the last 30 OFDM symbols.

The symbol window tracker sets the start of the symbol equal to the expected
start of the symbol, corrected by the mean displacement and the next decode
stop to eight samples clockwise of the start of the symbol.

The source code of the symbol window tracker is printed and described in
[7] sections A.5.3 and A.5.4. This function can be enabled or disabled in the
receiver model, to investigate its functioning.

4.5 Prefix removal

At this point in the receiver, the location of the first sample of the data symbol
is known, namely Start of symbol as discussed in section 4.4. At a distance of
TCP = 16 samples the useful data part of the symbol begins. The next TU = 64
samples are copied to a length 64 cyclic buffer. All functions after this prefix
removal function will operate on the new cyclic buffer, since it is a waste of
calculation power to correct errors in the prefix. The cyclic prefix of the symbol
will only be used to keep track of frequency offset (see next section) and could
possibly be used in channel equalization.5

4.6 Frequency offset estimation

In section 3.3.1 we saw that a difference in mix frequencies between transmitter
and receiver causes inter-subcarrier interference. We assumed that the frequency
offset does not change over time. In this section a method will be presented
that enables the receiver to compensate (partly) for frequency offsets, using
information that can be retrieved from the received preamble sections. The
frequency offset correction function has two functions:

• Determination of the frequency offset ∆′
f

• Correction of the frequency offset

In the following sections these tasks will be discussed.
3In figure 4.7 this is denoted as ”search area for start of current symbol”.
4Note that the prefix and the end of the symbol are both different distorted.
5This function is not implemented in the channel equalizer in this report.
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4.6.1 Measuring frequency offset

The preamble sections are –just like regular OFDM symbols– distorted by a
frequency offset. Since the sections contain known subcarrier values, the data
can be used to measure effects of a frequency offset. We will denote the measured
frequency offset by ∆′

f . This measurement should be as close as possible to ∆f .

There are two approaches to this problem; the frequency offset can be de-
termined in the frequency domain and in the time domain. First the frequency
domain method will be discussed, followed by the time domain method that has
been implemented in the receiver model.

In the frequency domain there is a direct relationship between measured
power in a subcarrier caused by inter-subcarrier interference and the frequency
offset present (see figure 3.10 and equation 3.27).6 Preamble sections A and B
(see section 2.8) are suitable for this kind of frequency offset detection, since
they contain loaded subcarriers surrounded by not-loaded subcarriers (see [24]).

An estimation of the frequency offset can be made by measuring the average
power7 in the subcarriers next to the loaded subcarriers in preamble sections
A and B, and use the result of figure 3.10 to determine the frequency offset
∆′

f . This method is not implemented in the model of the physical layer of the
receiver, because we have seen in chapter 3 that inter-subcarrier interference
also can be caused by –in example– phase noise.

x[i]

y[i]
Regression line

Measured data

Figure 4.8: Regression line in measured data. The slope of the line is calculated with
equation 4.6. This is used to determine the average rotation per sample caused by a
frequency offset

Another to method to measure frequency offset takes place in the time do-
main. This method measures the average rotation per sample in preamble sec-
tions A and B. Consider the following definition (a, b ∈ C and a, b 6= 0):

Θ(a, b) , arctan
( <(a)
=(a)

)
− arctan

( <(b)
=(b)

)
(4.5)

This function calculates the angle between a and b. We will determine the
rotation between the expected sample value in a preamble and the received input

6We assume that other distortions that can cause inter-subcarrier interference, are not
present.

7To minimize the influence of noise.
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sample. Subsequently we will calculate the slope of the regression line of the
rotation. The regression slope is defined as (see [34] and figure 4.8):

N ·
N−1∑

i=0

x[i] y[i] −
N−1∑

i=0

x[i] ·
N−1∑

i=0

y[i]

N ·
N−1∑

i=0

x2[i]−
(

N−1∑

i=0

x[i]

)2 (4.6)

In which y[i] is the measured rotation Θ(~vpreamble[i] , ~vinput[i]), x[i] is the sample
index (thus x[i] = i) and N is the number of samples that we use. The equation
can be simplified with respect to x[i] and N , namely:

64 ·
63∑

i=0

i Θ(~vpreamble[i] , ~vinput[i]) − 2016 ·
63∑

i=0

Θ(~vpreamble[i] , ~vinput[i])

1397760
(4.7)

In this equation we used N = 64 for two reasons: the preambles are also
subject to the delay spread of the channel, hence we not use the first 16 samples
(just like the cyclic prefix to regular OFDM symbols), because they can contain
inter-preamble interference. And the second reason is a more practical one: the
preambles are generated using a 64 sample IFFT and hence it is practical to
work with 64 samples.

The result of equation 4.7 is the rotation per sample. This value can easily
be used to calculate ∆′

f . Note that other distortions can have influence on the
rotation we calculate.

In the receiver model currently only preamble section A is used to get an
estimation of the frequency offset. Note that the last 16 samples of this preamble
section are sign inverted compared to the previous 16. The rotation for that part
should thus be corrected with π.

The model should be extended with the frequency estimation using preamble
section B. A solution must be conceived on how to determine the frequency offset
when only preamble section C is transmitted. Probably, the frequency domain
method discussed above can be applied to subcarriers −27 and 27, because those
are not used to carry a value.

4.6.2 Correcting frequency offset

In the introduction of this chapter we have already seen that the correction for
a frequency offset should take place in the time domain, because in that case
it is possible to correct for smaller frequency deviations than one of subcarrier
spacing ∆f .

The frequency offset is corrected by multiplying all input samples with:

e−2πf ′∆t (4.8)
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before further processing.

The source code of the frequency offset corrector implemented in the physical
layer model of the receiver, is printed in [7] section A.5.5. This function can be
enabled or disabled in the receiver model, to investigate its functioning.

Note that this implementation does not correct for a phase offset that is
common to all input samples, although this is necessary for the correct operation
of the frequency offset corrector. The common phase offset should be removed
by the common phase offset corrector (see section 4.8).

4.7 Inverse orthogonal frequency division mul-
tiplexing

At this point in the receiver, 64 time domain samples are extracted that (most
likely) represent the useful data part of the OFDM symbol that has to be de-
modulated. But before the demodulation can take place, the subcarrier values
must be retrieved from the useful data part. This can be done by applying a fast
Fourier transform (FFT ) to the vector containing the 64 samples (see also 4.5).
The FFT is the inverse operation of the IFFT that already has been discussed
in section 2.7.2. The FFT efficiently implements a DFT, namely

f̂n[x] =
N−1∑
m=0

s̃n[m]e−2π xm
N =

1
N
·DFT (s̃n[m]) (4.9)

With x = 0, ..., 63 and

f̂n = [0 Ĉn,1 Ĉn,2 . . . Ĉn,26 0 0 0 0 0 0 0 0 0 0 0 Ĉn,−26 . . . Ĉn,−2 Ĉn,−1] (4.10)

From this vector the 52 subcarrier values can be extracted.

In the receiver model, an in-place FFT has been implemented (see [35]).
The advantage of this algorithm is that it uses the same vector for input as well
as output. This saves memory spaces. The FFT implementation uses radix two
butterflies to calculate its outcome (see [35]). The source code of this operation
is printed [7] section A.5.8.

4.8 Common phase offset correction

Common phase offset occurs when mixers in transmitter and receiver do not
have the same phase at a given time.8 In section 3.3.2 we saw that this phase
offset is common to all subcarriers.

8In this section we assume that there is no frequency offset present in the system, for
example f∆ = 0 or that the system corrected the frequency offset correctly (∆′f = ∆f ). A

phase difference will thus not be caused by a frequency offset.
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The common rotation of the subcarriers can be determined by calculating
the mean rotation of the pilot carriers (see section 2.7.1) compared to their
expected values, using equation 4.5. Keep in mind that a timing error causes a
distributed rotation of all subcarriers (see equation 3.43).

In figure 4.9 an example is given of the phase offset correction. In the example
QPSK is used as subcarrier modulation technique. The uncorrected subcarriers
are rotated clockwise. This will introduce large bit errors.
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Figure 4.9: Example of the phase offset correction for QPSK

The source code of this function can be found in [7] sectio A.5.6. This function
can be enabled or disabled in the receiver model, to investigate its functioning.

4.9 Phase noise correction

In [32] phase noise is discussed. The author states that phase noise can not be
corrected in the receiver at reasonable costs and hence we will not try to find a
solution for this signal distortion in this report.

4.10 Channel equalization

One of the conclusions of chapter 3 was that a HiperLAN/2 receiver should have
a channel equalizer. The transfer function of the indoor radio channel can be
written at baseband level (see equation 3.18). This means also that the channel
can be equalized in the frequency domain, thus after the inverse OFDM (see
[30]).
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A channel equalizer is partly implemented in the model of the physical layer
of the receiver. Since the coherence time of the channel is about 10 ms (see
section 3.2.4) and a burst has a duration of 2 ms, I did not implement an adaptive
channel equalizer. When the HiperLAN/2 channel models are implemented,
future work should decide whether this is a correct decision.

The channel estimator in the receiver model uses preamble section C to
determine an estimation of the channel. This preamble is modulated BPSK (see
section 2.8). The following equation is used (i = −26, ...,−1, 1, ..., 26):

1
Ĥl

= ~Vpreamble[l]/~Vinput[l] (4.11)

With ~Vpreamble is the subcarrier vector of preamble section C and ~Vinput is the
FFT of 64 input samples recognized as preamble section C.

Before demapping (see section 4.11) each subcarrier value is corrected with:

Čγ =
Ĉγ

Ĥγ

(4.12)

This channel equalization method is sensitive to noise. In [30] the effects of
channel estimation errors is discussed. Note that also preamble section C must
correctly be identified.

The source code of the channel estimator is printed in [7] section A.5.10. The
channel estimation function can be enabled or disabled in the receiver model.

4.11 Demapping

As discussed in section 2.6, there are four subcarrier mapping techniques: BPSK,
QPSK, 16QAM and 64QAM. Each of those techniques has a different number
of bits per complex subcarrier symbol. In this section the inverse process of
mapping will be discussed.

Consider the received the demodulated subcarrier symbol Ĉγ . This symbol
is distorted by the radio channel and receiver hardware, and is adjusted by the
demodulator part of the receiver. The most likely symbol that was transmitted,
is probably the symbol to which Ĉγ is closest to in distance. The Euclidian
distance is given by (a, b ∈ C):

|a− b| ,
√

(<{a} − <{b} )2 + (={a} − ={b} )2 (4.13)

We define all possible subcarrier values for a certain mapping scheme C. One
possible symbol out of the list of all possible symbols in denoted by cξ ∈ C. To
find the nearest subcarrier value to the received subcarrier value, calculate:

i = arg min
ξ=[ 0,..,2NBP SC−1 ]

|Ĉγ − cξ| (4.14)
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The value i is directly related to the bit pattern associated with the most likely
received symbol. This is repeated for all 48 subcarriers.

This method of demapping is called hard decision, coherent demapping (see
[10] and [14]). The source code is printed in [7] section A.5.7. This is the only
function in the receiver that is dependent on the subcarrier modulation type.

4.12 Conclusion

The following functions are implemented in the model of the demodulation part
of the receiver (see also figure 4.1):

• Serial to parallel conversion. This function is implemented in the model,
because the main demodulation function of the receiver, an IDFT, works
with parallel data instead of the serial data generated by the hardware of
the receiver. The input samples of the receiver are stored in a cyclic buffer.
This kind of buffer is efficient, because no shifting of samples is necessary,
when the oldest sample must be erased from the bottom and a new one
stored at the top.

• Synchronization. This function takes care of detecting a transmission burst,
detecting the preambles in the burst and tracking symbol window drift.
This function uses a matched filter to operate on time domain samples.
Demodulation cycles will take place about every 80 received samples.

• Prefix removal. After synchronization the useful data part is extracted
from the input samples.

• Frequency offset correction. Frequency offset estimation can take place in
time domain as well as in frequency domain. In this report is chosen for
the time domain option. This method uses the preambles in the burst, to
determine the average rotation per sample, by calculating the slope of the
regression line of all rotations, between received and expected samples in
the preamble. The estimation is used to rotate all input samples to the
receiver appropriately.

• Inverse OFDM. Next the subcarrier values are retrieved from the time
domain samples by applying a special form of DFT: the efficient FFT
algorithm.

• Channel equalization. The implemented receiver model uses preamble sec-
tion C to determine the channels transfer function. This transfer function
is obtained and equalized in the frequency domain.

• Demapping. A received subcarrier value is quantized into one of all possible
subcarrier values of a mapping technique, by determining the smallest
Euclidean distance. Next the bit values associated with the symbol are
passed to the output of the receiver model. This is repeated for all 48
subcarriers.
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Chapter 5

Model Simulation Results

5.1 Introduction

This chapter presents some simulation results of the HiperLAN/2 physical layer
model. First the transmitter and receiver will be connected directly together.
In this way we can see how, in the ideal case, signals in the system should look.
Two methods for looking at complex subcarrier values will be presented.

The following experiment determines the performance of the model on an
AWGN channel. The result is compared to the theoretical expected performance,
as was discussed in section 2.10. The experiment is executed for 64-bit floating
point numbers, 32-bit fixed point numbers and 16-bit fixed point numbers, to
investigate the influence of computational noise (see section 3.6).

In the next conducted experiment, the influence of noise on the frequency
offset estimator and the common phase offset corrector is investigated. For this
experiment an AWGN channel will be used too.

At the end of this chapter a real world experiment will be done. The output of
the HiperLAN/2 transmitter is fed to a signal generator. The output of the signal
generator is sampled with an oscilloscope and passed along to the HiperLAN/2
receiver model.

Throughout this chapter the transmitter model will transmit random bits
(with equal probability for a 1 or a 0), the broadcast burst will be used and
64-bit floating point numbers will be used, unless otherwise noted.

5.2 Ideal channel simulation results

In this section we will have a look at the model, when no distortions like fre-
quency offset or phase offset are present. This gives insight in how the signals
in the model should look in the ideal case. We will also determine the computa-
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Figure 5.1: Model configuration

tional requirements of the transmitter and the receiver model. The simulation
structure that will be used for the experiments in this section, is depicted in
figure 5.1.

5.2.1 Visualization of outputs

The experiment set-up has three outputs: the complex subcarrier values that
are used to create the OFDM symbols1 (this is named Trans. C in figure 5.1),
the complex subcarrier values before they enter the demapping part in the
receiver (Receiv. C) and the input bits of the transmitter, compared with the
demodulated bits (Bits).

There are two ways of looking at the subcarrier outputs: the contents of a
subcarrier plotted against its subcarrier number l or the contents of a subcarrier
plotted against time. The first method is in fact a frequency spectrum of the
received signal. The latter method is called an eye diagram.

In figure 5.2 the contents of the subcarriers is plotted against their subcarrier
number. The pilot carriers (see section 2.7.1) are clearly visible in the figure.
QPSK was used as subcarrier modulation method, hence two subcarrier values
(besides the pilot values and zero) appear in the plots of <{C} and ={C}.

In figure 5.3 an eye diagram is drawn of the subcarrier values that are re-
ceived. In the figure QPSK is used as modulation method. The OFDM symbols
that carry data are proceeded by a broadcast preamble (see section 2.8) and
hence the subcarrier values stay zero for some time.2 Because preamble section
C is used in the receiver model for channel equalization (see section 4.10), the
subcarrier contents of that preamble is also written to the output Receiv. C.
This section is clearly visible in the figure.3 Even the pattern of the pilot values
can be distinguished in the figure (see equation 2.13).

1In chapter 2 this was denoted as fn in equation 2.19.
2Note that the receiver also has to gather all 80 time samples of the first data OFDM

symbol and an additional 8 samples to allow symbol window drift (see section 4.4.3).
3Preamble section C is BPSK modulated and thus the subcarrier values contain only a

real component. The configuration of the preamble is discussed in section 2.8.
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Figure 5.2: Contents of the subcarriers in the receiver (Receiv. C) against their
subcarrier number. OFDM symbol n = 0 is depicted. The pilot carriers are clearly
visible at l = −21,−7, 7 and 21. QPSK was used as subcarrier modulation method

The two methods of looking at the subcarrier outputs are used throughout
this chapter. They form a useful tool to identify the effects of distortions or
–when new receiver algorithms are being developed– to spot errors in the re-
ceiver model implementation. Another useful visualization tool is to subtract
the transmitted bits and the demodulated bits. In this way bit errors can be
seen quickly. Note that the transmitted bitstream must be delayed to compen-
sate for the delay, that occurs in the receiver (see section 4.4.3). The output
Bits is shown in figure 5.4.

5.2.2 Computational requirements of transmitter and re-
ceiver algorithms

The receiver and transmitter models keep track of the number of numerical
operations, like ”+” and ”/”, that is carried out (see section 3.6.5). For this
experiment we will use a fixed burst type, namely broadcast and the receiver
will be set to enable all compensations, like frequency offset correction and
channel estimation. Next the modulation type of the model will be changed. The
transmitter model writes its operation usage statistics to the file TxInfo.txt
and the receiver to RxInfo.txt.
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Figure 5.3: Eye diagram of Receiv. C
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Figure 5.4: Visualization of bit errors. In this simulation no distortions were present
and hence no bit errors occur. When bit errors do occur, they will show in the ”dif-
ference” graph
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In table 5.1 the computational requirements per second of the transmitter
are presented. Note that there are about 250, 000 OFDM symbols in a single
second. This means that the IFFT function already preforms 24 106 complex
multiplications and 96 106 complex subtractions and additions (see [30] and
[35]). In table 5.1 we see these results clearly, since for a complex addition or
subtraction, two real additions or subtractions must be calculated. One complex
multiplication requires four real number multiplications and two additions. Some
of those multiplications disappear to the special operations, since they involve
rotations.

Table 5.1: Computational requirements of the transmitter per second. Special op-
erations denote square roots, rotations etc. Note that these statistics represent real
number operations; complex number operations are split into real number operations

Modulation type: BPSK QPSK 16QAM 64QAM
Additions 95.616 106 95.616 106 95.616 106 95.616 106

Subtractions 128.014 106 128.014 106 128.014 106 128.014 106

Multiplications 47.808 106 47.808 106 47.808 106 47.808 106

Divisions 0 0 0 0
Comparisons 0 0 0 0
Special operations 191.232 106 191.232 106 191.232 106 191.232 106

Table 5.2: Computational requirements of the receiver per second (see also comment
of table 5.1)

Modulation type: BPSK QPSK 16QAM 64QAM
Additions 587.333 106 610.853 106 751.973 106 1, 316.453 106

Subtractions 369.392 106 416.432 106 698.672 106 1, 827.632 106

Multiplications 929.110 106 976.150 106 1, 258.390 106 2, 387.350 106

Divisions 332.916 106 332.916 106 333.130 106 333.130 106

Comparisons 197.618 106 221.138 106 362.258 106 926.738 106

Special operations 417.248 106 417.248 106 417.248 106 417.248 106

Table 5.2 shows the computational requirements of the receiver algorithms.
The algorithms are clearly dependent on the subcarrier modulation type that
is used. In chapter 4.11 we have seen that the demapping function is the only
function in the receiver model that is dependent on the subcarrier modulation
type. Hence can be concluded that this function performs a large part of the
calculation that are done. Note that for 64QAM in total 250, 000·64·48 = 768 106

comparisons per second are made by the demapping function, each involving
two multiplications and three additions/substractions. A future study should
conceive on a more efficient demapping function.

The demonstrator of the SDR project will be using a general purpose pro-
cessor of a personal computer to perform the demodulation tasks in the digital
domain (see [2]). Future studies must show whether the proposed processor can
meet the computational requirements of the receiver algorithms discussed in
this report.
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5.3 Comparison theoretical and simulated per-
formance on AWGN channel

Section 2.10 discussed the expected performance of the HiperLAN/2 system,
when transmitting over an AWGN channel. In this section we will compare the
performance of the simulation model with the expected performance. First the
AWGN channel experiment will be carried out with the best number precision4

available (64-bit floating point number; see [4] and [3]), followed by a simulation
using 32-bit fixed point numbers (as is proposed in [17]) and a simulation using
16-bit fixed point numbers. In all simulations 25, 000 OFDM symbols5 were used
to obtain the results.

5.3.1 Experiment configuration

The layout of the model used in the AWGN channel simulations is depicted
in figure 5.5. This model layout is stored separately for the four modulation
techniques, because this eases the gathering of simulation results.
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Figure 5.5: AWGN channel experiment
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Figure 5.6: Complex bandlimited white Gaussian noise model (see [3])

The complex bandlimited white noise block contains two of Matlab’s bandlim-
ited white noise models (see [3] and figure 5.6). These two models are combined
in such way that they form complex noise. The random noise values are added
to the transmitted signal.

First, the bit energy Eb is determined for all modulation types. This value
will be used later on to calculate the N0 value that is necessary to reach a
certain Eb/N0-ratio. Although burst type in the models is set to broadcast, the

4See section 3.6.
5This equals 1.2 106 – 7.2 106 bits. If we want at least 100 bit errors per simulation, the

results with a BER of 1 10−5 or lower become unreliable.
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energy in the preamble is not used to calculate Eb, because the calculations in
section 2.10 assume that no preamble is used.

Next, BERs are measured with the error rate calculation block (see [7]), for
certain Eb/N0-ratios. In [7] section A.6 the Matlab script is printed, that is used
to gather the results. The following sections will present the simulation results.

In the receiver model frequency offset estimation, phase offset estimation,
channel equalization and symbol window drift tracking are disabled.

5.3.2 AWGN channel simulation results using 64-bit float-
ing point numbers

In figure 5.7 the results of the AWGN channel experiment are compared to the
theoretical performance of the system (explained in section 2.10). The receiver
simulation model used 64-bit floating point numbers. This build-in C++ number
type uses ten exponent bits and 52 (plus one hidden) mantissa bits and two sign
bits (see [4] and section 3.6.4).
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Figure 5.7: AWGN channel simulation BER results (64-bit floating point numbers)

The BPSK and QPSK simulation results match their theoretical expected
BER Eb/N0 relation. The 16QAM subcarrier modulation technique in the model
performs slightly better than expected and 64QAM performs slightly worse than
expected. Both stay within 0.1 dB to their expected ”waterfall” curves.

The simulation results are used to calculate at what Eb/N0-ratio the system
meets its minimum sensitivity demand after FEC decoding (see sections 2.2.3
and 2.4). The results of this calculation are shown in table 5.3. The results show,
that the 64QAM result differs 1 dB with the expected value. The other results
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stay within 0.5 dB of their expected value.

Table 5.3: Simulated minimum Eb/N0 requirements to reach a PER of 10% using
packet length of 54 bytes. table 2.15 shows the expected values.

Bit-rate mode Sub carrier modulation Rc Minimum Eb/N0 [dB]
A BPSK 1/2 3.5
B BPSK 3/4 5.5
C QPSK 1/2 6.0
D QPSK 3/4 8.5
E 16QAM 9/16 11.0
F 16QAM 3/4 12.0
G 64QAM 3/4 16.0

5.3.3 AWGN channel simulation results using 32-bit fixed
point numbers

The AWGN channel experiment is repeated with a receiver model, that uses
32-bit fixed point numbers. Fixed point numbers are discussed in section 3.6.3.
One of the 32-bits is the sign bit. The point is said to be at position g = 15 (see
section 3.6.1 for the definition of position of the point). In figure 5.8 the BER
versus Eb/N0 simulation results are plotted.
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Figure 5.8: AWGN channel simulation results (32-bit fixed point numbers)

These simulation results are not significantly different with those found in
section 5.3.2. Hence I agree with the choice made in [17] to use 32-bit fixed
point numbers in the receiver implementation. Future work should investigate
the effects of using 32-bit fixed point numbers in the digital channel selection
filters.
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5.3.4 AWGN channel simulation results using 16-bit fixed
point numbers

When the AWGN channel experiment is repeated with 16-bit fixed point num-
bers, the results start to differ from their expected values. As can be expected,
64QAM suffers most from the computational noise, that is added in the model
by using 16-bit fixed point numbers. Apparently the computational noise is the
main disturbing factor from Eb/N0 ≈ 16 dB. The simulation results are plotted
in figure 5.9.
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Figure 5.9: AWGN channel simulation results (16-bit fixed point numbers)

5.4 Phase offset simulation

In this section the functioning of the phase offset correction will be show on
an AWGN channel. This function will also be used in the next experiment: the
frequency offset experiment.

5.4.1 Experiment configuration

For this experiment the model presented in figure 5.5, will be extended with a
phase rotation of the transmitted signal before noise is added and the signal is
fed into the receiver. The model layout is depicted in figure 5.10.

The subcarrier modulation type is set to 16QAM and the burst type to
broadcast. Per simulation 25, 000 OFDM symbols will be transmitted. The all
corrections functions in the receiver are disabled. In the model the phase is
changed from 0 rad to π rad in steps of π/4 rad. For each phase offset the
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Figure 5.10: Model used for phase offset correction experiment

AWGN experiment is done. Finally the experiment is repeated with phase offset
correction enabled.

5.4.2 Results

The results of the above described phase offset experiment are shown in figures
5.11 and 5.12. From the figures can be concluded that a phase offset causes a
large BER, when it is not corrected. The phase offset corrector corrects without
a problem the phase offsets for all Eb/N0-ratios to at most 1 dB distance to the
theoretical expected curve.

5.5 Frequency offset simulation results

A frequency difference between the mix frequency in transmitter and receiver
cause inter-subcarrier interference (see section 3.3.1). Section 4.6 presented a
method to make an estimation of the frequency offset. In this section the influ-
ence of noise on the frequency offset estimation and correction will be discussed
by looking at simulation results.

5.5.1 Experiment configuration

To determine the influence of noise on the frequency offset estimation and cor-
rection, a frequency offset will be introduced to the input of the receiver by
multiplying the output of the transmitter with a complex power of e. This is
described in section 3.3.1, equation 3.23. The model configuration used for the
experiment in this section is shown in figure 5.13.

The subcarrier modulation type is set to 16QAM and the burst type to
broadcast. Per simulation 25, 000 OFDM symbols will be transmitted. The fre-
quency and phase offset corrections are disabled. The frequency offset in the
model is changed from f∆ = 0 to f∆ = ∆f in steps of ∆f/5. For each frequency
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Figure 5.11: Phase offset simulation results. The phase offset correction is not active
in this figure. Only ψ0 = 0 rad is demodulated correctly. The other phase offsets case
a BER of 0.5
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Figure 5.12: Phase offset simulation results. In this figure the phase offset correction
is active. All phase offset results stay within 1 dB to the theoretical performance
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Figure 5.13: Model for frequency offset simulations. The ”ramp” block is used to
generate the time dependent argument for the complex power of e.

offset the AWGN experiment is done.6 Finally the experiment is repeated with
frequency and phase offset corrections enabled.

5.5.2 Results

In figures 5.14 and 5.15 the results of the above discussed experiment are de-
picted. From the figure 5.14 can be concluded that frequency offsets up to
f∆ = 62.5 KHz do not need to be corrected; they do not have an influence on
the performance of the system. For that frequency offset7 the inter-subcarrier
interference will cause that about 5% of the power of a neighboring subcarrier
will spill into a subcarrier (see figure 3.10). Other frequency offsets cause a BER
of 0.5.

Figure 5.15 shows the waterfall curves when the frequency offset correction
and phase offset correction are enabled. The frequency offset corrector can cor-
rect all tested frequency offsets, except for f∆ = ∆f . Note that the maximum al-
lowed frequency offset in the HiperLAN/2 system is 250 KHz (see section 3.3.1).
The frequency offset results stay within 1 dB of their theoretical expected value.

In fact we test the influence of noise and frequency offset on the detection
of the preambles with this experiment too. In figure 5.15 we see for low values
of Eb/N0 that sometimes the preamble detection fails. This results immediately
in a BER of 0.5. Apparently, a frequency offset in combination with high noise
levels, can cause that preamble section A is not recognized properly.

5.6 Signal generator – scope channel results

In this ”real world” experiment a signal generator (Agilent E4438C vector signal
generator) is used to transmit the HiperLAN/2 transmitter’s complex time sam-
ples at baseband level. A scope (Tektronix TDS7407) was used to sample the
transmitted baseband signal. The resulting samples were fed to the HiperLAN/2
receiver model and demodulated.

6Only for 64-bit floating point numbers.
7f∆/∆f = 0.2
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Figure 5.14: Frequency offset simulation results. The frequency offset correction is
not active in this figure. f∆ = 62.5 KHz is demodulated correctly. Other frequency
offsets cause BERs of ≈ 0.5
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Figure 5.15: Frequency offset simulation results. In this figure the frequency cor-
rection is active. Most frequency offset results stay within 1 dB to the theoretical
performance. f∆ = ∆f = 312.5 KHz can not be corrected.
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The experiment configuration of this test is described in [28]. The signals
that are generated by the Agilent signal generator, are sampled by the Tektronix
scope at 80 MHz and a resolution of 8 bits.

The sampled values are imported in Matlab Simulink, down sampled to 20
MHz and fed to the receiver model. The experiment is repeated for BPSK,
QPSK, 16QAM and 64QAM.

5.6.1 Results

In table 5.4 the measurement results are show of the experiment discussed above
and in [28]. The BPSK and QPSK bits are demodulated without problem. The
16QAM and 64QAM bits are retrieved with the bit errors. Turning on the
channel estimation in the receiver model, lowers the number of bit errors clearly.

Table 5.4: Results of the signal generator-scope experiment. About 1 ms of signal
(250 OFDM symbols) was transmitted

Modulation technique BER Status channel equalization
BPSK 0.000 Enabled/Disabled
QPSK 0.000 Enabled/Disabled
16QAM 0.169 Disabled
16QAM 0.010 Enabled
64QAM 0.239 Disabled
64QAM 0.079 Enabled

With figure 5.7 we can conclude that the Eb/N0-ratio in this experiment
was ≈ 12.5 dB.

5.7 Conclusion

In this chapter some model simulation results have been obtained:

• We looked at a simulation using an ideal channel. This gave insight in how
signals should look without distortions.

• The computational requirements were determined. Future work should
study whether the computational requirements can be met by a general
purpose processor. This type of processor is proposed in the SDR project
[2] for signal operations. The demapping should be optimized in future
work, to reduce its computational requirements.

• Next the AWGN channel experiment was repeated for three number types:
64-bit floating point, 32-bit fixed point and 16-bit point numbers. The 64-
bit and 32-bit results matched the theoretical performance very closely.
Thus 32-bit fixed point numbers can be used in a demodulator, as was
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proposed in [17]. The 16-bit results start to differ from the theoretical
expected values. As could be expected, 64QAM is most sensitive to dis-
tortion.

• The phase offset experiment showed, that phase errors –when they are not
corrected– cause large bit errors. The phase offset corrector proposed in
this report has an good performance. In corrects all phase offsets on an
AWGN channel within 1 dB of theoretical expected value.

• A frequency offset causes inter-subcarrier interference. This was clearly
visible in the simulation results of the frequency offset experiment. Only
a frequency offset of f∆/∆f = 0.2 did not need to be corrected. The
frequency offset corrector, proposed in this report, corrected the waterfall
curves to at most 1 dB of the theoretical expected curves. A frequency
offset of f∆ = ∆f could not be corrected. Note that the maximum allowed
frequency offset is 250 KHz. Sometimes the recognition of preamble section
A failed.

• In the signal generator-scope experiment BPSK and QPSK could be de-
modulated without bit errors. Bit errors occurred when the experiment
was repeated for 16QAM and 64QAM. The resulting BER could be low-
ered by enabling the channel estimator. Apparently the Eb/N0-ratio in
this experiment was ≈ 12.5 dB.
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Chapter 6

Conclusions and
Recommendations

6.1 Conclusions

In this Master of Science thesis a model of the WLAN HiperLAN/2 standard
physical layer is presented. The model is intended for use in the SDR project,
that is currently investigating the feasibility of a software defined radio by de-
signing a demonstrator. The model consists of two parts: a HiperLAN/2 trans-
mitter and a HiperLAN/2 receiver.

First the HiperLAN/2 physical layer in the transmitter was investigated:

• Input bits of the physical layer are scrambled. This causes a possible im-
provement of the BER.

• A convolutional encoder in combination with bit-rate mode dependent
puncturing is used to apply FEC coding to the scrambled bits. The per-
formance of the FEC coding in combination with an ideal decoder was
analytical determined. The result is shown in figure 2.4.

• The FEC coded bits are interleaved to transmit neighboring bits on differ-
ent subcarriers. This improves the BER in fading channel environments.

• The bits are mapped using BPSK, QPSK, 16QAM or 64QAM on the 48
data subcarriers used in the system. The average power of the transmitted
signal is kept equal for all modulation types.

• Four pilot carriers are inserted to assist coherent demodulation.

• OFDM is used as modulation technique. The subcarriers are orthogonal to
each other in the useful symbol part. OFDM can efficiently be implemented
with an IFFT function.
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• A cyclic prefix is added to the signal, to combat inter-symbol interference
caused by the radio channel.

• The theoretical performance of the HiperLAN/2 OFDM system on an
AWGN channel was outlined in section 2.10. The results are depicted in
figures 2.11 and 2.12 and table 2.15. These results can be used to test a
decoder.

• A HiperLAN/2 physical layer simulation model of the transmitter has
been implemented. It models the mapping, OFDM and physical burst
generation functions. It passed its functional test.

The transmitted signal is distorted by the radio channel, the receiver hard-
ware and the channel selection filters before it reaches the in software imple-
mented demodulation part in the receiver.

• Reflection, scattering and diffraction cause the receiver to receive attenu-
ated and delayed versions of the transmitted signal. This is modelled with
the Rayleigh channel model.

• The maximum delay spread in the HiperLAN/2 transmission band is typ-
ically 130 ns. The cyclic prefix of an OFDM symbol is long enough to
combat inter-symbol interference caused by the delay spread.

• A channel equalizer should be implemented in a HiperLAN/2 demodula-
tor. It should be adaptive and it should be updated at least once in 10 ms.
The channel can be described at baseband level, thus the channel equalizer
may also operate at baseband level.

• Impurities in the mixer frequencies, that are used in the analog parts of
a HiperLAN/2 transmitter and HiperLAN/2 receiver can be divided in:
frequency offset, common phase offset and phase noise. A frequency offset
causes local inter-subcarrier interference locally, while phase noise causes
inter-subcarrier interference with all subcarriers. Common phase offset
causes a phase rotation equal to all subcarriers. These effects can cause
large BERs. The receiver should estimate the distortions and compensate
for them. Note that the maximum allowed frequency offset is 250 KHz
(see [8]).

• The analog to digital converter introduces quantization noise. The anti-
aliasing filter distorts the subcarrier values.

• A difference in sample length between HiperLAN/2 transmitter and re-
ceiver causes symbol window drift. This cause a phase rotation of the
subcarrier values that is dependent on the subcarrier number.

• The digital channel selection filter gives rise to errors in the subcarrier
values. Since these disturbances are known, the receiver can easily correct
the errors.

• The receiver uses an ALU to perform calculations. The ALU has a finite
precision. This causes computational noise to signals in the receiver. A
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model of an ALU has been presented, that can simulate computational
noise.

The following demodulation functions are implemented in the receiver model:

• Serial to parallel conversion. This function is implemented in the model,
because the main demodulation function of the receiver, an IDFT, works
with parallel data instead of the serial data generated by the hardware of
the receiver.

• Synchronization. This function takes care of detecting a transmission burst,
detecting the preambles in the burst and tracking symbol window drift.
Demodulation cycles will take place about every 80 received samples.

• Prefix removal. After synchronization the useful data part is extracted
from the input samples.

• Frequency offset correction. An estimation of frequency offset is made using
the preambles in the burst. This estimation is used to rotate all input
samples of the receiver appropriately.

• Inverse OFDM. The subcarrier values are retrieved from the time domain
samples by applying the efficient FFT algorithm.

• Channel equalization. The implemented receiver model uses preamble sec-
tion C to determine the channels transfer function. This transfer function
is obtained and equalized in the frequency domain.

• Demapping. A received subcarrier value is quantized into one of all possible
subcarrier values of a mapping technique, by determining the smallest
Euclidean distance. Next the bit values associated with the symbol are
passed to the output of the receiver model. This is repeated for all 48
subcarriers.

The HiperLAN/2 models are implemented in Matlab Simulink (see [3]) using
C++ as programming language. The models are tested in [28] and [16]. They
passed their functional test. The following experiments are conduced in this
report:

• The computational requirements were determined. The results are pre-
sented in tables 5.1 and 5.2.

• Three AWGN channel experiments were conducted for three number types:
64-bit floating point, 32-bit fixed point and 16-bit point numbers. The 64-
bit and 32-bit results matched the theoretical performance very closely
(0.1 dB). Thus 32-bit fixed point numbers can be used in a demodulator,
as was proposed in [17]. The 16-bit results start to differ from the theo-
retical expected values. As could be expected, 64QAM is most sensitive
to distortion.
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• The phase offset experiment showed, that phase errors –when they are not
corrected– cause large bit errors. The phase offset corrector proposed in
this report has an good performance. In corrects all phase offsets on an
AWGN channel within 1 dB of theoretical expected value.

• The frequency offset experiment showed, that frequency offsets –when they
are not corrected– cause large bit errors. Only a frequency offsets up to
f∆/∆f = 0.2 do not need to be corrected. The frequency offset corrector,
proposed in this report, corrected the waterfall curves to within 1 dB of
the theoretical expected curves. A frequency offset of f∆ = ∆f could not
be corrected.

• In the signal generator-scope experiment BPSK and QPSK could be de-
modulated without bit errors. Bit errors occurred when the experiment
was repeated for 16QAM and 64QAM. The resulting BER could be low-
ered by enabling the channel estimator. Apparently the Eb/N0-ratio in
this experiment was ≈ 12.5 dB. With this experiment is also proved that
the model can generate test signals and that the model can demodulate
captured signals.

6.2 Recommendations

The following recommendations are made in this report:

• Scrambling, FEC coding and interleaving functions should be implemented
in the HiperLAN/2 physical layer models.

• The five channel models created by ETSI for use in HiperLAN/2 simula-
tions (see [21]) should be implemented.

• Since the coherence time of the channel is about 10 ms (see section 3.2.4)
and a burst has a duration of 2 ms, an adaptive channel equalizer was not
implemented. Simulations with the channel models must show that this is
a correct approach.

• The demapping function is responsible for a large part of the compu-
tational requirements of the receiver. A future study must investigate
whether the demapping function can be implemented more efficiently.

• The demonstrator of the SDR project will be using a general purpose
processor of a personal computer to perform the demodulation tasks in
the digital domain (see [2]). Future studies must show whether the pro-
posed processor can meet the computational requirements of the receiver
algorithms discussed in this report.

• Future work should investigate the effects of using 32-bit fixed point num-
bers in the digital channel selection filters on the performance of the sys-
tem.
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